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Abstract 
We compare an objective and a subjective performance 

measure for color constancy algorithms. Eight hyper-spectral 
images were rendered under a neutral reference illuminant and 
four chromatic illuminants (Red, Green, Yellow, Blue). The 
scenes rendered under the chromatic illuminants were color 
corrected by 5 color constancy algorithms that are based on 
zero-, first- and second-order image statistics. The angular 
error is used as the objective performance measure for color 
constancy. It estimates the chromatic mismatch between the 
true and estimated illuminant vector in RGB space. A 
subjective performance measure was derived from a 
psychophysical experiment involving paired comparisons of the 
color corrected images shown on a calibrated monitor. Eight 
subjects indicated their preference with respect to color 
reproduction when comparing the two images (i.e. color 
constancy algorithms) against the reference image (the same 
scene under neutral illumination). Our results indicate a large 
negative correlation (-0.9 on average) between the objective 
and subjective color constancy measures. The data suggests the 
possibility for further improvement of the correlation between 
the two types of performance measures. 

Introduction  
Color constancy is the ability of a visual system (either 

human or machine) to maintain stable object color appearances 
despite considerable changes in the spectral composition of the 
illuminant. A key issue is how to disentangle the product of 
illumination and object reflection that is sampled by the visual 
system. In computer vision the usual way to approach the color 
constancy problem is by estimating the illuminant, so that 
reflectance can be recovered. Such color constancy algorithms 
may serve to correct the color balance of images for display or 
to support object recognition [1]. For objective evaluation of 
the effectiveness of color constancy algorithms the angular 
error is widely used [2]. The angular error ε is defined as the 
angular distance between the algorithm’s estimate of the light 
source (ee) and the true illuminant vector (el) in normalized 
RGB space: 

( )el ee
)) ⋅= −1cosε   (1) 

 Although the value of the angular error indicates how 
closely an original illuminant vector is approximated by the 
estimated one (after intensity normalization), it does not predict 
the color reproduction accuracy or color naturalness of color 
constancy algorithms. For that it is necessary to compare the 
color corrected images with the original images under reference 
illumination, which might be done by a computer algorithm or 
by visual inspection. Here we focus on the latter.  

Recently, a framework of color constancy methods is 
proposed by van de Weijer et al. [3]. By varying one or more of 
the three framework parameters a set of color constancy 

methods can be generated. It incorporates some well-known 
algorithms based on zeroth-order statistics (i.e. pixel values) 
like the White-Patch algorithm [4], the Grey-World algorithm 
[5], but also new methods based on higher-order (e.g. first- and 
second-order) statistics. For the purpose of this study, we use 
five instantiations of the framework that represent a variety of 
algorithms: WP (White-Patch), GW (Grey-World), GGW 
(General Grey World), 1-GE (First-order Grey-Edge) and 2-GE 
(Second-order Grey-Edge). In this paper, we compare the 
angular errors of these five algorithms with visual judgments 
on the color fidelity and show that they are clearly correlated. 

Methods 
Eight hyperspectral images were selected that originate 

from Foster et al. [6]. We preferred these spectral images to 
normal RGB images because in this study we wanted to 
simulate a natural and colorimetrically correct interaction 
between illuminants and objects. Following Delahunt & 
Brainard [7] we selected one neutral reference illuminant 
(daylight CIE D65) and four chromatic test illuminants (Red, 
Green, Yellow, and Blue). The spectral power distributions of 
our illuminants were created with the CIE daylight basis 
functions [8] and were intensity scaled to ensure acceptable 
image quality when shown on an sRGB display. The four 
chromatic illuminants are perceptually equidistant from the 
neutral illuminant, at 28 abE∆ units. Figure 1 shows an example 
of the illumination effects. 
 

Figure 1. Scene 7 (one of our 8 test scenes) rendered under the different 

illuminants. The central image is under reference illuminant D65. Starting 

at the top position, in clockwise rotation the images correspond to the 

Yellow, Red, Blue and Green illuminant, respectively. The four chromatic 

illuminants are perceptually equidistant from D65, at 28 ∆Eab units. Prior 

to application of the spectral illuminants the calibration objects in the 

original images were removed, and resulting image gaps were filled in 

with the “inpainting” method of Criminisi et al. [9].  
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Figure 2. Positions of the test illuminants Red, Yellow, Green, Blue and 

estimated counterparts in CIE a*,b* space. The neutral D65 reference 

illuminant is located at the origin. Dotted lines connect the a*b* 

coordinates of the real illuminants whereas solid lines connect those 

estimated by the color constancy algorithms. Illuminant coordinates 

shown here were obtained by averaging over the 8 test scenes. 

 
After “application” of the illuminants, the 5 different color 

constancy algorithms previously introduced were used to 
correct the color balance of the images. That is, they first 
estimate the illuminant from the scene and then correct the 
color balance using the von Kries diagonal transform [10], 
leaving the intensity of the images unchanged. The algorithms 
only differ in the way they estimate the illuminant from the 
scene. Here we do not further discuss the algorithm details, 
more information is presented in [3]. In Figure 2 we plot the 
a*b* coordinates of the (real) chromatic test illuminants Red, 
Green, Yellow and Blue and the estimated ones resulting from 
the five algorithms. Note that the estimates are shifted towards 
positive b* values, i.e. towards yellow. This is explained by the 
fact that the average color balance of the scenes under D65 is 
already shifted somewhat towards yellow, as shown in Figure 3 
for test scene 7. 
 

Figure 3. Scatter plot of a*b* values for test scene 7. Each image pixel 

corresponds to one data point. 

 

In a dim room, images were presented on a calibrated 
LCD monitor (Eizo ColorEdge CG211). Before each 
experimental session, the self-adjusting monitor was calibrated 
to conform to the sRGB profile [11]. Eight subjects with 
normal color vision as confirmed by the HRR color vision test 
[12] and normal or corrected to normal visual acuity 
participated in the experiments. Images were shown on a 
neutral background (a*=b*=0) at an intensity level 
corresponding to L*=50 (Figure 4). Each experimental display 
was composed of four images. The upper two images serve as 
reference, representing the test scene under D65 illumination. 
The lower two images correspond to the test scene rendered 
under one of the chromatic test illuminants after which a color 
constancy algorithm was applied. Different algorithms are used 
on the lower left and right image. Subjects were instructed to 
compare the color reproduction of each of the lower images 
with the upper references. They then indicated which of the two 
lower images had the best color reproduction, but could also 
indicate equal performance (as good or as bad). 

 

 

Figure 4. Screen layout of the visual experiment. The upper two images 

are identical references and represent the test scene under neutral D65 

illumination. The lower two images correspond to the test scene 

rendered under one of the test illuminants (Red, Green, Yellow or Blue) 

after which a color constancy algorithm was applied. Different algorithms 

are used on the lower left and right image. Subjects had to indicate which 

of the two lower images had the best color reproduction compared to the 

upper reference images. 

 

Results  
      Each of the 5 color constancy algorithms was tested 
against the other 4, implying that each subject took 320 trials (8 
scenes x 4 test illuminants x 10 algorithm pairs). In each trial of 
our paired comparison experiment, the “winning” algorithm 
(visually having the best color fidelity) received 1 point, the 
“losing” algorithm received no points. In case of a tie, both 
algorithms received 0.5 point. In the latter case the two images 
have perceptually the same distance to the reference image, but 
this tells nothing about the absolute value of the distance. For 
each combination of test scene and test illuminant, the 
maximum score for an algorithm to gain is 4 since each 
algorithm “plays” against the four others exactly once. 

In Table 1 we show the results as obtained by averaging over 
the 8 observers. Before we applied averaging however, we 
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analyzed the inter-observer agreement in different ways. First 
we calculated the individual differences from the mean 
observer scores. For each observer we computed the correlation 
coefficient of his/her average algorithm scores (averaged over 
scenes and illuminants) with the algorithm scores of the 
average observer. The latter are presented in the bottom row of 
Table 1. The correlation coefficients so obtained varied from 
0.952 to 0.993, with an average of 0.983. Correlation 
coefficients between scores of the individual observers ranged 
from 0.895 to 0.998 and were all significant at the 95% 
confidence level (for 5 data points the critical value is 0.878). 
The average of 0.983 drops to about 0.4 when replacing the 
observer data with random data (as if observers randomly 
assigned their visual preference to the left or right image). 
Second, Root Mean Square analysis of the observer responses 
revealed that none of the observers is to be considered an 
outlier. Further analysis was therefore only performed on 
average observer data. 

Table 1: Subjective scores per combination of scene and test 
illuminant, averaged over the 8 observers. The last column 
shows the correlation coefficient r between visual score and 
angular error. The bottom row shows the scores averaged 
over the eight scenes and four illuminants. 

Color constancy algorithm Sce 
Ne 

Illu
min 1 2 3 4 5 

r 

B 2.0 4.0 3.0 0.4 0.6 -0.99 
G 2.0 3.8 3.2 0.6 0.4 -0.93 
R 2.0 4.0 3.0 0.4 0.6 -0.98 

1 

Y 2.1 3.8 3.1 0.2 0.8 -0.93 
B 4.0 0.9 2.1 0.9 2.1 -0.95 
G 4.0 0.1 1.5 1.6 2.8 -0.99 
R 4.0 0.4 2.3 1.0 2.3 -0.96 

2 

Y 3.9 0.0 1.3 2.3 2.5 -0.95 
B 1.8 0.7 1.5 2.5 3.6 -0.98 
G 0.0 1.0 2.6 2.8 3.7 -0.80 
R 0.3 0.8 3.5 2.3 3.2 -0.79 

3 

Y 0.8 0.3 2.9 2.5 3.6 -0.97 
B 3.4 0.0 3.5 1.1 2.0 -0.97 
G 1.1 0.0 3.9 2.3 2.8 -0.68 
R 0.9 0.2 4.0 1.9 2.9 -0.67 

4 

Y 2.8 0.0 3.9 1.2 2.2 -0.97 
B 4.0 2.6 2.4 0.5 0.5 -0.99 
G 4.0 2.1 2.6 0.4 0.9 -0.99 
R 3.9 2.6 2.5 0.3 0.7 -0.98 

5 

Y 4.0 0.4 3.0 0.7 1.9 -0.88 
B 2.1 3.9 3.0 0.5 0.6 -0.99 
G 1.9 3.8 3.1 0.4 0.8 -0.99 
R 2.3 3.6 3.0 0.4 0.7 -0.99 

6 

Y 2.7 3.4 2.8 0.9 0.3 -0.95 
B 0.8 3.9 3.1 1.5 0.8 -0.94 
G 2.8 3.6 2.6 0.7 0.3 -0.99 
R 0.0 3.6 3.4 1.4 1.6 -0.80 

7 

Y 1.1 3.7 3.0 1.2 1.1 -0.88 
B 0.1 1.4 2.6 3.1 2.8 -0.95 
G 0.5 1.6 2.3 2.8 2.9 -0.01 
R 0.0 1.1 2.9 3.1 3.0 -0.69 

8 

Y 1.0 0.4 2.3 2.9 3.4 -0.77 
Average 2.1 1.9 2.8 1.4 1.8 -0.88 

 

In Table 1, the maximum score per cell is 4 which is 
obtained when all 8 observers assigned the particular algorithm 
(1=WP, 2=GW, 3=GGW, 4=1-GE, 5=2-GE) as the “winner” in 
the visual image comparison.  Table 1 shows that on average 
the General Grey World color constancy algorithm has the 
highest visual score for this particular set of scenes. However, 
this is an average result and it is clear from the Table that each 
scene has its “own” best performing color constancy algorithm.  
So it makes sense to compare the subjective scores with the 
objective scores (the angular error) per scene, or even per 
combination of scene and illuminant (i.e. per row in Table 1). 
Also, one may compare the scores per test illuminant, as 
presented in Figure 5 where data are averaged over the 8 
observers and the 8 test scenes. Correlation coefficients 
between objective and subjective scores in Figure 5 are as 
follows: r=-0.98 for Blue,   -0.80 for Green, -0.77 for Red and  
-0.85 for Yellow illumination. In terms of percentage explained 
variance this is  R2=0.95 for Blue, 0.64 for Green, 0.59 for Red, 
and 0.73 for Yellow illumination. 

Figure 5. Comparison of objective and subjective color constancy 

performance (averages over observers and scenes). Per set of 5 data 

points (belonging to the 5 color constancy algorithms) a simple linear 

regression can be performed that already accounts for reasonably high 

percentages explained variance.   

 

Note that the correlation coefficients are negative. This is due 
to the fact that a low value of the angular error represents a 
good illuminant estimation which will result in a good color 
correction of the image, and hence will give rise to a good 
visual judgment (a high score).  
 
Averaged over all 32 cases in Table 1, the average correlation 
coefficient is -0.88. Remarkable exceptions to the high 
correlations are found for illuminants Red and Green in scenes 
4 and 8. The value -0.01 for illuminant Green in scene 8 is 
really standing out. Leaving this data point out improves the 
correlation coefficient to an average of -0.92, but from 
inspection of the particular data point we could not find a 
reason to exclude it. We arrived at the same conclusion for the 
other deviant data points. Assuming that all 8 observers did 
their job correctly – which we do not doubt - this indicates that 
the angular error might be improved to better correlate with our 
perceptual error measure. 
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Conclusion 
Comparison of the angular error (objective performance) 

with visual judgment (subjective performance) reveals a large 
correlation (about -0.9 on average) between the two 
performance measures, using color constancy methods with 
different orders of image statistics. Although a restricted set of 
test scenes was studied, the data already suggest that there is 
room for an improved correlation between the two types of                        
performance measures. 
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