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Color constancy was studied under conditions simulating either natural or extremely artificial
illumination. Four test illuminants were used: two broadband phases of daylight (correlated color
temperatures 4000 and 25,000 K) and two spectrally impoverished metamers of these lights, each
consisting of only two wavelengths. A computer controlled color monitor was used for reproducing
the chromaticities and luminances of an array of Munsell color samples rendered under these
illuminants. An asymmetric haploscopic matching paradigm was used in which the same stimulus
pattern, either illuminated by one of the test illuminants, or by a standard broadband daylight
(Dg¢s), was alternately presented to the left and right eye. Subjects adjusted the RGB settings of the
samples seen under Dg¢s (match condition), to match the appearance of the color samples seen under
the test illuminant. The results show the expected failure of color constancy under two-wavelengths
illumination, and approximate color constancy under natural illumination. Quantitative
predictions of the results were made on the basis of two different models, a computational model
for recovering surface reflectance, and a model that assumes the color response to be determined by
cone-specific contrast and absolute level of stimulation (Lucassen & Walraven, 1993). The latter
model was found to provide somewhat more accurate predictions, under all illuminant conditions.
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INTRODUCTION

In this paper we report experiments in which we
compared the visual system’s response to computer
simulations of Munsell chips illuminated by either broad-
band light, or light composed of only two wavelengths.
This was done in the context of color constancy, the
ability to perceive object colors as fairly stable,
independent of the spectral composition of the illumi-
nant. In most studies of color constancy it is customary to
employ a more or less ‘“natural” illuminant-object
interaction, even when the colors are simulated on a
color monitor. Usually, the stimulus pattern consists,
then, of Munsell chips illuminated by incandescent light
or different phases of daylight (e.g. Arend & Reeves,
1986; Arend et al., 1991; Foster et al., 1992; Ho et al.,
1990; Tiplitz-Blackwell & Buchsbaum, 1988).

The reason why we chose to also measure color
constancy under extremely impoverished spectral condi-
tions is twofold. First, we wanted to further test the
applicability of an undoubtedly too simple, but so far
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accurate, model derived in a preceding study (Lucassen
& Walraven, 1993). The model in question was based on
data from a rather synthetic world, characterized by a
trichromatic illuminant—object interaction commonly
used in computer graphics (cf. Borges, 1991). The
present study provides “real world” data, obtained under
conditions employing a realistic illuminant—object inter-
action, both for natural and artificial illuminants.

Our second reason for doing these experiments is the
need for experimental tests of a fairly recent class of
computational models of color constancy (e.g. Brill &
West, 1986; Buchsbaum, 1980; D’Zmura & Lennie,
1986; Forsyth, 1990; Maloney, 1986, 1992; Maloney &
Wandell, 1986; van Trigt, 1990). These models typically
aim at recovering the spectral information that is lost in
the process of light absorption in the eye’s photopig-
ments. This implies decomposing the light reflected from
a surface, into its two constituent spectral distributions,
i.e. the spectral power distribution of the illuminant and
the reflectance function of the surface in question. The
underlying principle used for such a spectral dissociation
relies on the spectral constraints that have been found to
hold for our natural environment. It can be shown, by
principal component analysis, that the spectral power
distribution of phases of daylight can be approximated by
only three basis functions (Judd er al., 1964). A similar
simplification can be applied to surface reflectances
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(Cohen, 1964), for which three basis functions may also
account for most of the variance (Dannemiller, 1992;
Maloney, 1986). Given the two sets of basis functions
and an estimate of the color of the illuminant (in terms of
CIE or receptor coordinates), the latter can be eliminated
(e.g. Buchsbaum, 1980), and hence, surface reflectance
extracted. The estimation of the illuminant is usually
obtained indirectly, e.g. by taking samples of reflected
light from a sufficiently large collection of surface
reflectances (Buchsbaum, 1980; Maloney & Wandell,
1986). This is, in a nutshell, the rationale underlying the
majority of the recent (linear) computational approaches
to color constancy. For a more detailed discussion, see
the comprehensive introductions by D’Zmura and Lennie
(1986) or by Thompson et al. (1992).

For flat, homogeneously illuminated surfaces, and
within the spectral constraints of naturally occurring
surface reflectance functions and illuminant spectral
power distributions, the aforementioned computational
models should be quite successful in recovering surface
reflectance, and hence, be capable of good color
constancy. When these preconditions are not met, the
models may be expected to fail, of course. However, such
failures should be precisely predictable, for a given
choice of model and illuminant-surface interaction
(Maloney, 1992). Therefore, as a first step in the
validation of this class of models, it would be informative
to compare model predictions and experimental data
under both favorable and adverse illuminant conditions.

Although the primary goal of this study is to show the
general applicability of our earlier data analysis (that is,
without having to consider spectral constraints) we shall
also present predictions that are obtained by a computa-
tional model based on the principles outlined above. We
shall refer to this model as the “Judd-Cohen model”,
since it incorporates the linear approximations of
illuminant and reflectance spectra as reported by Judd
et al. (1964) and Cohen (1964), respectively.

In this study, as in most other studies on color
constancy, we only address the purely sensory aspect of
color vision. The subjects are asked to match the color
and brightness of samples seen under different illumi-
nants. This task can be performed with good reproduci-
bility (Lucassen & Walraven, 1993), requires no long
training sessions and can be shown to yield a relatively
high degree of color constancy. Other methods might
have been used as well (see the Discussion), but since we
wanted to test the applicability of the model derived in
our previous study, we decided to stick to the same
method.

METHODS

General outline of experimental method

Subjects saw two displays, which we call “test” and
“match”, alternately with the left and right eyes. Each
display simulated an identical array of 35 Munsell chips
on a neutral background. On the “test” display, seen by
the left eye, four different test illuminants were used. In
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TABLE 1. Munsell renotations and CIE x, y, § equivalents (under Dgs
white light) of the 30 chromatic and six achromatic samples of the
stimulus pattern shown in Fig. 1

X, y, f equivalents

Sample Simulated under illuminant Dgs
number Munsell
in Fig. 1 chip x y B
1 10 YR 5/2 0.3579 0.3637 0.1939
2 5 PB 5/4 0.2733 0.2897 0.1997
3 10 G 572 0.2964 0.3489 0.1924
4 5P5/4 0.3023 0.2877 0.1967
5 5G5/4 0.2875 0.3804 0.1969
6 10Y 572 0.3460 0.3783 0.1900
7 5B5/4 0.2548 0.3099 0.1946
8 10 R 5/6 0.4398 0.3604 0.1858
9 10Y 5/6 0.4113 0.4769 0.1901
10 N 3.5/ 0.3151 0.3303 0.0881
11 10 GY 5/2 0.3155 0.3684 0.1921
12 10 RP 5/6 0.3916 0.3151 0.1903
13 N 6.5/ 0.3139 0.3308 0.3635
14 10 YR 5/6 0.4462 0.4244 0.1962
15 10 GY 5/6 0.3175 0.4494 0.1938
16" 5 BG 5/4 0.2633 0.3432 0.1925
17 10R 52 0.3527 0.3425 0.1946
18" N 5.0/ 0.3146 0.3318 0.1983
19 10 BG 5/2 0.2844 0.3268 0.1963
20° 5R5/4 0.3802 0.3346 0.1931
21 10 P 5/6 0.3297 0.2782 0.1920
22 10 B 5/6 0.2310 0.2739 0.1992
23 N 2.5/ 0.3147 0.3314 0.0458
24 10 G 5/6 0.2541 0.3797 0.1986
25 10 P 572 0.3202 0.3130 0.1909
26 N 6.0/ 0.3140 0.3308 0.3068
27 10 PB 5/6 0.2733 0.2573 0.2021
28 10 BG 5/6 0.2247 03144 0.2000
29" 5 YR 5/4 0.4037 0.3749 0.1898
30 10 PB 5/2 0.2991 0.3044 0.1965
31 5 RP 5/4 0.3494 0.3094 0.1895
32 5 GY 5/4 0.3525 0.4256 0.1915
33 10 RP 5/2 0.3400 0.3272 0.1965
34 5Y 5/4 0.3965 0.4203 0.1917
35 10 B 5/2 0.2862 0.3131 0.1977
36 N 7.0/ 0.3138 0.3312 0.4359

B represents luminance reflectance relative to an ideal white reflector
(BaSO,). The 11 samples of the test set are indicated by an
asterisk.

the “match” display, seen by the right eye, the subject
adjusted the central patch to match that of the test display.
The illumination on this display was always Dgs daylight.
The displays were seen alternately, for 5 sec each, with a
brief dark interval in between (the switching time for the
shutter). Conditions differed as to which of the four test
illuminants was used, and which Munsell test sample,
chosen from a subset of 11 out of the 35, was placed in
the center of the test display to be matched. This made 44
conditions in all. The subjects ran four sessions, each
session dealing with one of the four test illuminants.

A more detailed account, from stimulus preparation to
observer’s task, is given below.

Surface reflectances

The spectral reflectance, R(4), of 36 samples from the
Munsell Book of Color (glossy finish) were measured in
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FIGURE 1. Stimulus geometry. The 1.3 deg squares are separated by a

1.3 deg grid. The background (grid) dimensions are 19.5 x 14.3 deg,

somewhat smaller than the whole monitor screen (about 20 deg). The

remaining area on the screen was black. See Table 1 for colorimetric
specifications of the numbered samples.

the range 390 <A< 730 nm at 2-nm wavelength intervals
with a SpectraScan PR-702AM spectroradiometer (Photo
Research). The reflectances were measured relative to a
BaSO, white, in the 0/45 deg measuring geometry. The
CIE x, y chromaticities and luminance factor f§ (relative
to white) of these samples under various illuminations,
E(A), were computed by first calculating the X, Y, Z
tristimulus values, using the numerical procedure:

X = % E(VR(NE(N) AN (1)

A=390

730
> E(RMAP(N)AX (2)

A=390

Y =

§ E(\R(MZ(A) AN
A=390

where (), y(A)andZ(A) represent the CIE 1931 color
matching functions and AZ=2nm. The colorimetric
specifications of the 36 Munsell samples under illuminant
Dgs are listed in Table 1. We used 30 chromatic and six
achromatic samples, presented as a 5 x 7 matrix of square
patches on a homogeneous background (one of the six
achromatic samples). This was the same stimulus pattern
as used in our earlier studies on color constancy and
chromatic induction (Lucassen & Walraven, 1993;
Wairaven et al., 1991). The chromatic samples were
selected from three loci of equal Munsell Chroma (/6, /4
and /2) at Munsell Value 5/, the neutrals ranged from
Value 2.5 through 7.0. The samples were presented on a
neutral background (n =7.0/), resulting in a relative
reflectance (sample to background) of 46%. The numbers
of the samples in Fig. 1 correspond to those in Table 1.
Eleven samples (ten chromatic and one neutral),
indicated by an asterisk in Table 1, were used as test
stimuli in our matching paradigm.

As discussed in our preceding paper (Lucassen &

Z = (3)
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Walraven, 1993), the distribution of the samples over the
stimulus array was not random. It ensured a more or less
balanced average color, locally (averaged over neighbor-
ing patches) as well as globally. The variety in color
samples ensured an adequate sampling of color space. It
is also in compliance with the requirements for
computational models of color constancy that typically
depend on an adequate number of surface reflectances in
order to obtain a good estimate of the illuminant (e.g.
Maloney & Wandell, 1986).

Hluminants

Two classes of illuminants were simulated: three
(natural) broadband daylights and two (artificial) two-
wavelength compositions. One of the broadband illumi-
nants (Dgs) was used for illuminating the match
(reference) pattern, the other four served as test
illuminants for the test pattern.

The relative spectral radiant power distributions of the
three broadband illuminants were generated by the CIE
method—derived from the principal components analysis
of Judd et al. (1964)—as described in Wyszecki and
Stiles (1982). This method takes as input the correlated
color temperature (7,) of a daylight illuminant D, where
T. may range from 4000 to 25,000 K. The output is a
spectrum E(2), with 2 in steps of 10 nm. In order to obtain
the same spectral resolution as in the reflectance
measurements (2nm) we interpolated E(4) at 2nm
intervals.

In our simulation, the standard (white) illuminant Dgs
(T.=6500 K, x=0.3127, y=0.3290) was used for
illuminating the match (reference) pattern. The two other
daylight illuminants, D,y (T.=4000 K, x=0.3823,
y=03838) and Dys9 (T.=25,000 K, x=0.2499,
y = 0.2548), were used as broadband test illuminants.
Strictly speaking, the CIE method for generating the
spectral power distribution of daylight illuminants
requires the illuminant’s x-coordinate to satisfy
0.25 < x < 0.38. The x-chromaticities of D4y and D,sq
(0.3823 and 0.2499) violate these boundary conditions,
but the violations are so small that we may safely assume
that this does not affect the reality aspect of our
simulation.

The other two test illuminants, designated by M, and
M,s, (using M for metameric), were each composed of
two wavelengths, A; and A,. For My, 4; =592 nm and
/12 =491.8 nm, and for M25(], Al =560 nm and
A>=433.7nm.* The relative intensities (power ratio
I, /1,) of these wavelengths were 1.566 for My, and
1.254 for M5, so as to yield the same x, y chromaticities
of illuminant M4 and M,s5q as for D4y and D,sg. Thus,
M4, was metameric with D4g, and M»s, was metameric
with Dpso. The intensity of the (homogeneous)
illuminants was such that a perfectly reflecting white
diffuser would have a luminance of 30.4 cd/m?, resulting

*In order to compute X, Y, Z tristimulus values according to Eqs (1)
(3) we interpolated the color matching functions and the reflectance
spectra at 0.1 nm steps and used AA=0.1nm for these two
illuminants.
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in a luminance of the chromatic samples (Value 5) of
about 6 cd/m” under Dygs, consistent with our earlier
studies.

The x, y chromaticities of the Munsell samples under
the broad band illuminants, D4, and D>, are those found
when viewing the Munsell Book in outdoor illumination
(ignoring atmospheric effects etc.), that is, they are
realistic (natural) values. The x, y chromaticities of the
Munsell samples rendered under the two-wavelengths
lights, M4y and M,s,, fall on the lines that connect the
corresponding wavelengths in CIE x, y chromaticity
space. Although rather unnatural, such stimuli are
physically realizable in the laboratory by using laser
lights, narrow-band interference filters or monochroma-
tors.

Stimulus presentation

The x, y, Y equivalents of the samples under the various
illuminants were displayed on a calibrated high resolu-
tion color monitor (Sony, 1152 x 900 pixels) that was
controlled by a Sun 3/260 computer (24 bit/color). For
the human eye, the video RGB metamers are physically
indistinguishable (as far as color is concerned) from their
paper counterparts. The calibration procedure for the
monitor, and the colorimetric equations required for
displaying specified x, y, Y values on a color monitor,
have been published elsewhere (Lucassen & Walraven,
1990).

In each experimental condition, two displays were
used: a test pattern, i.e. the samples as arranged in Fig. 1
under one of the test illuminants D4y, Dosg, Mag, or Mos,
and a match pattern of identical geometry, illuminated by
D¢s. A pyramidal box (1 m length) with two viewing
holes was placed in front of the monitor. A mechanical
shutter system, located just behind the two viewing holes,
alternately occluded the left and right viewing hole. In
this way, each eye was locked to one or the other of the
two successive illuminant conditions (test or match) to be
compared. The colors of the test and match pattern were
changed during the switching time of the shutters, which
only took a fraction of a second. The presentation time of
each pattern was set at five seconds. This was long
enough for the stimulus to “settle” (at these relatively
low light levels) and short enough not to disrupt the
comparison of test and match sample.

Procedure

After about 5 min of dark adaptation and a few more
minutes for adapting to the average luminance and color
of the test pattern, the observer started the first
presentation of the two alternating illuminant conditions.
When viewing the test (left eye) and match pattern (right
eye) the observer concentrated on the central patch. The
color of the matching sample, which was initially black,
was under mouse control. Each mouse movement was
translated by the computer into a movement through CIE
x, y color space, after which the color of the matching
sample was updated accordingly. Two of the three mouse
buttons were pressed to increase or decrease the
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luminance of the patch at constant x, y chromaticities.
The third mouse button was pressed to indicatc that a
satisfactory match had been obtained, after which the
next test patch was presented (in total 11 samples, in
pseudo-random order).

Even for unexperienced subjects, this matching
procedure was easy to comprehend and required only a
few training sessions to obtain reliable results. In our
previous study (Lucassen & Walraven, 1993) we reported
on a pilot experiment in which the test and match
illuminants were identical (D¢s white). That experiment
was performed to test the reliability of the experimental
method, and in particular the precision with which a
haploscopic color match can be made. For the set of 11
test colors (the same set as used in the present study) the
average chromatic deviation between test color and
observer match was A,, = 0.008. Compared to the size
of the chromatic shifts measured in color constancy, that
precision is sufficient to allow gathering data without
repetition. Therefore, each subject made only one match
per sample per illuminant condition. Two naive observers
(AV and EG) and the first author (ML), all with normal
color vision, served as subjects.

Task

The observers adjusted the central patch in the match
pattern to make it match the perceived hue, saturation,
and brightness of the corresponding sample in the test
pattern. They were free to make eye movements and to
use as many test/match alternations as were necessary to
obtain a satisfactory match. All three observers reported
that they were able to set satisfactory matches.

Data analysis

Chromatic constancy index. Data from experiments on
color constancy may exhibit more or less constancy,
depending on the experimental paradigm used. Arend et
al. (1991) introduced a chromatic constancy index for
expressing the degree of color constancy that they
obtained in their experiments on, what they called,
“simultaneous color constancy”. This index, /7, which is
essentially a chromatic Brunswik ratio (Brunswik, 1928)
is defined as

b

I=1--
a

(4)

where a and b represent Euclidean distances in CIE 1976
u'v' color space. When applied to our data, @ and b can be
computed from

a= (W -w@ o))" )

b= (WP +0i)
where the symbols in the subscripts refer to the symbols
we used for labeling our data (see Fig. 2). That is, open
squares for the samples under test illumination, open
circles for the samples under match illumination, and
solid circles for the matches to the test samples. In case of
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FIGURE 2. Experimental results with the daylight illuminants (top panels) and the two-wavelength illuminants (bottom panels)

for obs. AV (a), EG (b) and ML (c). O, Chromaticities of the test samples under Dgs; [, chromaticities of the test samples under

the test illuminant in question; @, chromaticities of the observer’s matches (under Dgs) to the test samples under the test

illuminant; x, test sample No. 29 (see Table 1 also). Taking this sample as the starting point, in clockwise rotation the following
test samples are found along each locus: 34, 32, 5, 16, 7, 2, 4, 31, and 20.

perfect color constancy, the solid and open circles in Fig.
2 would coincide, and the same would be true for the u'v'-
transformed versions of Fig. 2. Consequently, b would be
zero, and the constancy index / = 1. In the opposite case
(no color constancy), the solid circles would coincide
with the open squares. This would imply a =5, and
hence, I =0.

Since our study deals with both experimental and
predicted data, the chromatic constancy index will be
applied to both sets of data. In the case of predicted data

the index is computed in exactly the same way, but with
the observer matches replaced by the predicted matches.
The two indices will be called I, and 1, for referral to
experimental and predicted data, respectively.
Prediction error. A model may be theoretically
capable of achieving perfect color constancy (I, = 1),
but that does not necessarily make it a valid model for the
visual system. We therefore also computed a perfor-
mance measure, the prediction error (A,,), which
corresponds to the mean chromatic difference between
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the predicted and experimentally obtained chromaticity
matches. The prediction error for the 11 test samples is
computed by

1
~ 1 172
_ / ! 2 / / 2
Aurv’ = ﬁ ((upred,i - uexp,i) + (Vpred,i - chp.i) ) '
i=1

(7)

The prediction error is a better measure of the validity of
a model, of course, than its predicted color constancy
index.

RESULTS

Each subject made 11 color matches for each of the
four test illuminant conditions. These we shall refer to as
D 4o/Dgs, D25o/Dgs, M40/Dess and M,so/Dgs, to indicate the
test/match illuminant combination. In Fig. 2 the matches
for the separate observers are plotted in the CIE x, y
diagram.

The top panels in Fig. 2 relate to the two conditions
with the broadband daylight illuminants, the bottom
panels to the conditions with the two-wavelengths
illuminants. The straight lines in the plots represent the
boundaries of the triangular color space covered by the
phosphors of our CRT. Open squares represent the
chromaticities of the 11 test samples under the test
illuminant, open circles those under the (Dgs) match
illuminant. Points representing chromatic samples are
connected by lines. The remaining isolated points
represent the neutral sample. When comparing top and
bottom panels, note the difference in the chromaticities of
the colors rendered under the test illuminant. The solid
circles indicate the chromaticities of the observer’s
matches to the test samples.

The physical effect of changing the illuminant from
broadband (upper panel) to two-wavelengths illuminants
(lower panel), is to collapse the chromaticity locus of the
test colors onto a straight line (see the open squares). This
is the line connecting the chromaticities of the two
wavelengths of the My, or M,sy light source. Under
monochromatic light, all chromaticities would project
onto a single point.

In Fig. 2 perfect color constancy would be indicated by
coinciding solid and open circles, but this is never the
case. As expected, the deviations from perfect constancy
are smaller for the daylight illuminants than for the two-
wavelengths illuminants. There is a general tendency for
the match to the neutral test sample to be shifted back in
the direction of the neutral chromaticity of that sample
under white light (the solid circle in the middle). Such a
shift is in accordance with an incomplete von Kries color
transformation scheme (von Kries, 1905). The chromatic
test samples are shifted back in the same direction, but for
conditions M4¢/Dgs and M,5¢/Dgs the loss of the original
chromaticity spacing cannot be undone. For all observers,
the color matches fall on a single line (within experi-
mental spread). That line is translated (and rotated for
condition M,¢/Dgs), away from the line that connects the
physical chromaticities under the test illuminant.

M. P. LUCASSEN and J. WALRAVEN

TABLE 2. Maximum distances, in x, y space, between individual (Fig.
2) and averaged (Fig. 3) observer matches

Sample
number D4o/Dss D1so/Des M 40/Dess Maso/Des
2 0.011 0.010 0.013 0.010
4 0.020 0.022 0.007 0.009
5 0.020 0.007 0.016 0.013
7 0.019 0.013 0.022 0.019
16 0.024 0.006 0.004 0.013
18 0.042 0.005 0.020 0.015
20 0.017 0.014 0.017 0.013
29 0.019 0.010 0.022 0.041
31 0.023 0.019 0.023 0.015
32 0.016 0.035 0.006 0.036
34 0.013 0.039 0.021 0.026
Mean 0.020 0.016 0.015 0.019

The first column contains the numbers of the 11 test samples, indicated
by an asterisk in Table 1. The bottom row shows the mean
maximum distance, averaged over the 11 test samples.

In the Data Predictions we show that both the moderate
and gross violations from perfect color constancy are
actually predicted by assuming that the visual system
responds to cone-specific contrast. Before presenting
these predictions, however, we shall have a closer look at
the differences between observer matches and the degree
of color constancy exhibited by the data shown in Fig. 2.

Table 2 presents, for each test sample and illuminant
condition, the maximum individual deviations (Eucli-
dean distance) from the averaged x, y chromaticities (of
the matches). These deviations are expressed in x, y units,
so a value of 0.01 in Table 2 means that the individual x, y
matches for that particular sample are located within a
circle of radius 0.01 centered on the average x, y value.
The data in Table 2 show that, on average, the maximum
distance lies between 0.015 and 0.020.

We computed the (experimental) constancy index /.,
averaged over the 11 test samples, for each observer and
each illuminant condition. The mean values and standard
deviations of /, are presented in Table 3. The mean
constancy index ranges from about 38% (condition M>s¢/
Dgs) to 76% (condition D,s0/Dgs), while siandard
deviations range from 0.1 to 0.2. As expected, the index
for the two-wavelengths test illuminants is smaller than
that for the daylight test illuminants, indicating less color
constancy.

When comparing the constancy index values in Table 3
with the values that Arend et al. (1991) found for their
“unasserted color matches” (what we call sensory
matches), it appears that our data reveal a higher degree
of color constancy (some 20% in terms of the constancy
index). Troost and de Weert (1991b), who studied color
constancy with both successive and simultaneous stimu-
lus presentation, did not find large differences in a two-
dimensional Brunswik ratio (a comparable constancy
index) for their “exact matching” conditions. Their
results were in agreement with the results of the Arend et
al. (1991) study, in the sense that they too obtained a
relatively low degree of color constancy.
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TABLE 3. Chromatic constancy index averaged over the 11 test samples, for each observer and illuminant condition; these are the indices based
on the experimental data (7.), as computed with Eq. (4)

D4o/Des Dsso/Des M 4o/Dgs M50/Des
Observer Mean SD Mean SD Mean SD Mean SD
AV 0.586 0.190 0.723 0.169 0.561 0.181 0.378 0.201
EG 0.741 0.224 0.757 0.112 0.532 0.140 0.442 0.212
ML 0.600 0.103 0.750 0.113 0.469 0.134 0.417 0.206

TABLE 4. Luminance ratio of the test and match sample, averaged over the 11 test samples, for each observer and illuminant condition

Dyo/Des D;5¢/Des M4o/Dis M150/Des
Observer Mean SD Mean Mean SD Mean SD
AV 1.149 0.049 0.970 0.048 1.087 0.076 0.984 0.056
EG 1.011 0.059 1.007 0.041 1.057 0.075 0.998 0.052
ML 1.067 0.048 1.007 0.046 1.043 0.042 1.041 0.063

The difference between the degrees of color constancy
as measured in our experiments and those of the other
two studies mentioned, may be explained in terms of
chromatic adaptation. In our experiments, the two
illuminant conditions were viewed alternately with the
left and right eye, so that each eye was adapted to its own
illuminant color. In the studies of Arend et al. (1991) and
Troost and de Weert (1991b) using binocular vision, the
two eyes were adapted to both the test stimulus and the
match stimulus, either with simultaneous presentation of
the two illuminant conditions, or with successive
presentation. In a study of Eastman and Brecher (1972)
that specifically addressed the effect of viewing condition
on chromatic adaptation (matching of Munsell chips
illuminated by lights of 3000 and 6000 K, respectively) it
was found that successive haploscopic matching, the
method used in this study, yielded better color constancy
than the condition with binocularly viewed test and
match stimulus.

The constancy index, as defined by Eq. (4), is only
informative about chromatic shifts in the «'v' plane, but
does not relate to the luminance component. Therefore,
we also computed the ratio of the test sample luminance
to the match sample luminance. Mean values and
standard deviations of this ratio are presented in Table
4. The data in this table show that, on average, the
luminance of the match equals the luminance of the test
sample. Since the luminance of the backgrounds was the
same in both eyes, this implies that the luminance
contrasts of test and matching samples were also the
same.

DATA PREDICTIONS

In this section we compare predictions of the
experimental data on the basis of two models. The first
model is that derived in our previous study (Lucassen &
Walraven, 1993). We shall refer to this model as
“response function”. The second model uses the quite
different approach of recovering surface reflectance. That
model will be referred to as the “Judd—Cohen model”.

Response function

The results from the preceding study, which were
obtained with the same stimulus configuration (but
situated in an “RGB world”), could be described by
the response function

034
:(va)’1og<4.35Q—},> p=LM S (8

where QF represents the quantum catch per cone class, as
denoted by the superscript p. Additional subscripts j and
w, indicate the input from test sample and (white)
background, respectively. The spectral reflectance of the
latter is flat, so the background conveys the chromaticity
of the illuminant. The exponent r is observer dependent
(r = 0.3). The response function presented in Eq. (8) has
to be applied to both the test and match eye. The

response function
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FIGURE 3. Mean observer matches (@) and predictions (O) based on
the response function derived by Lucassen and Walraven (1993).
Predictions computed with Eq. (9) for r = 0.33.
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prediction of the match, in terms of cone inputs (Qf ), is
obtained by equating the test and match eyes responses,
RP'=RP™ where superscripts ¢ and m denote test and
match, respectively. These superscripts have to be
applied to each element in Eq. (8). The cone inputs
required for the matching sample, Q¥ can be computed
by substitution of Eq. (8) into R”* = RP™. One can thus
derive

m_ (25 ;" oL
log(QF™) = (Q{’J”’) log<4,35gé,> +10g(4‘35>.

9)

The predictions that are obtained by applying Eq. (9) to
the data, have been cast into terms of CIE x, y
chromaticity coordinates [see Lucassen & Walraven
(1993) for details]. In Fig. 3 these predicted chromati-
cities (open circles) are shown together with the
experimentally obtained values averaged over the three
observers (solid circles).

It is clear from Fig. 3 that Eq. (9) provides a good
description of the results.

The values of A, for conditions D4g/Dgs, D>s50/Des,
M4o/Dgs, and Mso/Des, computed in that order, were
0.0074, 0.0049, 0.0073, and 0.0072. Such small values,
associated with about 95% explained data variance, were
also obtained in our earlier study, in which we simulated
an altogether different class and range of illuminants.
Note that data from the daylight illuminants are about
equally well predicted as those obtained for the two-
wavelengths illuminants. Apparently, the complete dis-
regard of spectral distribution in this analysis, does not
affect the quality of the predictions, despite the fact that
the illuminants differ substantially in their spectral
composition.

Spectral distribution may be expected to be an
important factor for models that try to estimate the
illuminant. A representative of that class, to be discussed
next, is what we called the “Judd—Cohen model”.

The Judd—Cohen model

The Judd—Cohen model is essentially an implementa-
tion of the model of Buchsbaum (1980). It recovers
surface reflectance, R(4), by removing the illuminant
component, £(4), from the product of E(2) and R(4) that
provides the input to the visual system. That input, for a
given point in the visual stimulus, is given by the
quantum catches L, M, and S:

L =|EMNRMNL)A (10)

M = | EQVR(MM(N)dA (11)
J

S = |E(VR(NS(N)dA (12)

where L(2), M(4), and S(4) denote the spectral sensitiv-
ities of the long-, middle-, and short-wave sensitive
cones, for wavelengths in the visual range
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illuminants (@), compared to their estimated distributions ([J), as

obtained with the Judd—Cohen model. D4y and D,sq are broadband

lights; M4, and M5 are the corresponding metamers, consisting of the
two wavelengths indicated.

390<4<730 nm. Using the Judd spectral basis func-
tions, the model is capable of recovering the illuminant
spectrum from only the tristimulus values (or, the linearly
related quantum catches L, M, S) of the stimulus. How to
obtain that trichromatic information, is the central issue
in computational models of color constancy. Of the
various strategies adopted, the one most frequently used
was the gray world assumption (Evans, 1948; Buchs-
baum, 1980). It implies that the illuminant can be
estimated from the average chromaticity in the visual
scene. Since our stimulus pattern should closely obey the
gray world assumption (the samples are regularly spaced
over the hue circle, and the gray background occupies
about 80% of the stimulus area), we may assume that the
color of the illuminant (its tristimulus values), can be
accurately estimated by the model. However, the model
could not “know” of course, that, in the case of the
artificial illuminants, M4 and M,s,, the XYZ values are
not associated with real (broadband) daylight spectra.
The Judd—Cohen model reconstructs the spectrum of
the illuminant, £(4), and that of the reflectance functions,
R(A), by a linear combination of spectral basis functions:

E(/\) = E]El()\) + €2E2()\) + €3E3(/\) (13)

R()\) = rlRl()\) + l‘sz()\) + r3R3(/\) (14)

in which E,(1), Ex(4), E5(4) correspond to the (first three)
basis functions for the phases of daylight (Judd et al.,
1964), and Ry(4), R»(72), R3(4) correspond to the (first
three) basis functions for reflectance spectra of Munsell
chips (Cohen, 1964). The recovery of the spectral
reflectance function for a given surface is simply a
matter of substitution of Egs (13) and (14) in Eqs (10)-
(12) and solving the latter equations for the three basis
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[ Ry (ANENL(A)A
T =
JRUNEMN)S(N)dA

coefficients ry, ro, r3. When ry, r5, and r5 are found, the
spectral reflectance function can be reconstructed with
Eq. (14). However, this procedure can only succeed when
E(4) is known; otherwise Egs (10)~(12) contain too many
unknowns and hence, too many solutions exist.

Estimating the illuminant. In the Methods we already
discussed the CIE method [as described in Wyszecki and
Stiles (1982) pp. 145-146] for deriving the relative
spectral radiant power distributions of daylight illumi-
nants. This involves the computation of the illuminant’s
basis coefficients (e, e,, €5 in our nomenclature) required
for generating x, y chromaticities of the daylight
illuminant. By adopting the gray world assumption,
these chromaticities may be estimated from the spatially
averaged x, y chromaticities in the stimulus pattern. For
our test illuminants Dy, D50, M40, and Mosg the spatially
averaged (x, y) chromaticities are (0.3848,0.3867),
(0.2532,0.2610), (0.4007,0.3867) and (0.2534,0.2644),
respectively. Using these estimates we obtained the
results shown in Fig. 4.

Each of the four panels of Fig. 4 shows an illuminant’s
spectral power distribution (SPD), as estimated by the
Judd—Cohen model (), together with its “real” SPD
(@). The latter were generated by the CIE method, using
the actual x, y values instead of the estimated ones. The
model makes use of the same method, but uses the
aforementioned estimated x, y values. These are very
close to the real ones, and thus yield nearly perfect

[Roy(NE(NL(A)A
TRIEMM(NA [ RANE
[RA(NE(N)S(\)dA
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reconstructions of the SPDs of the broad band illuminants
(top panels in Fig. 4). This is no longer the case, of
course, for the two-wavelengths metamers (M40 and
M>sp). The x, y estimates are very similar for these lights
(due to the validity of the gray world assumption in the
case of our experiment), so the corresponding SPD
estimates closely resemble those of the broad band lights.
However, the reality is different now, the SPDs
consisting only of two wavelength spikes. Consequently,
the model should fail, in a predictable way, to correctly
estimate reflectance. Before showing these predictions,
we shall first describe how the reflectances were
computed.

Recovering surface reflectance. Once the illuminant
spectrum has been estimated, Eqs (10)+(12) can be
solved for the three basis coefficients r;, rp, r3 that
determine the spectral reflectance of the surface in the
stimulus pattern with inputs L, M, and S. The set of
equations that have to be solved are conveniently written
in vector and matrix notation:

L r
M =T ra
S r3

(15)

where the 3x3 matrix T is defined as

[R3(MEAL(A)dA
WOMAN)AA  [RI(MEMNM(A)dA
[R3(ME(N)S(N)dA

(16)

Note that all spectral functions appearing in the matrix T
are known at this stage, so, the integrations can be
performed. The three basis coefficients ry, r,, r3 that we
are looking for may then be computed from

r L
r B T_l M (17)
&} S

provided that the determinant de#(T)#0, and hence, T ™"
(the inverse of matrix T) exists. Finally, the reflectance
function R(4) can be reconstructed with Eq. (14).

An example of how the model succeeds in recovering
surface reflectance is shown in Fig. 5.

The estimated reflectance functions shown in Fig. 5 all
pertain to the same Munsell sample (5SBG 5/4), but the
estimates were obtained under four different illuminants.
For comparison, each panel also shows the measured
reflectance function. The top two panels, displaying the
recovered reflectances under broad-band light, show that
the Judd—Cohen model performs very well. As expected,
and shown in the two bottom panels, this is no longer
possible for the condition in which the sample is
illuminated by the two-wavelength light of the illumi-
nants My, or M,so. Under My the reconstructed sample
reflectance has been shifted towards blue, whereas under
M50 the reflectance more resembles that of an achro-
matic sample.



2708

Judd/Cohen model

PRI, ‘f\

/.o/o

T T
0.5 D4o/Des

/.

(4
0.3 Vo= HF

0’
- O, T
\, /
emean data ~e
omodel prediction
0.2F 1 ) L0y 1 ] 1]
T

T T T T
0.5 Mao/Dss \ M250/Des \
Y
0.4} 4k .
‘/./Q)
oy ST
g
03/ . 4+ 4
$
.I /
0.2F ! 1 1 ) ! 1
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
X X
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Judd—Cohen computational model.

The results shown in Fig. 5 are of interest in that they
show that a Judd—Cohen type computational model fails
in a predictable way when applied to illuminance spectra
that cannot be reconstructed with the Judd spectral basis
functions. The next step is to test whether the visual
system makes the same “mistakes” as those predicted by
the Judd—Cohen model.

Predictions. The predictions obtained with the Judd—
Cohen model, again in terms of the x, y chromaticities of
the matching sample under the Dgs reference illuminant,
are computed by the predicted tristimulus values

730

Xpred - Z D65

A=390

R(A)x(A)AA (18)

730

Z Des(AR(A)y(A)AA

A=390

Ypred = ( 19)

Zprcd = (20)

where Dgs(4) represents the spectral power distribution of
the Dgs daylight illuminant and R(1) represents the
recovered reflectance function for the test illuminant and
sample in question.
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Using the same data format as before, the predictions
of the Judd-Cohen model are shown in Fig. 6.

The data predictions obtained with the Judd—Cohen
model are in fair agreement with the data, but Fig. 3
shows that the performance of the response function is
still better. The values for the chromatic difference (the
prediction error), as defined in Eq. (7), are 0.0119,
0.0227, 0.0201, and 0.0263, for D4o/Des, D3s0/Des, Mao/
Dygs, and M50/Dgs, respectively. These values are 1.6-4.6
times larger than those obtained when using the response
function.

In addition to the prediction error we also computed the
predicted constancy indices (f,,). This constancy index is
not a criterion for evaluating the validity of the models.
All it does is provide a measure for the extent to which a
model is theoretically capable of achieving color
constancy, irrespective of whether the model is correct
or not. Table 5 shows the indices that the two models
predict for each of the four illuminant conditions.

The constancy indices obtained for the response
function are generally somewhat larger than the corre-
sponding values obtained for the Judd—Cohen model. We
did not expect this result, particularly not for the
conditions with broadband illumination. The spectral
distributions of Dy, and D,sq are quite accurately
estimated by the model (see Fig. 4), so it is apparently
the reconstruction of the surface reflectances that could
be improved upon, possibly by using more basis
functions (cf. Vrhel et al., 1994). On the other hand,
attempts to improve the constancy index might lead to a
less realistic model of the visual system. The experi-
mental evidence obtained so far, suggests that human
color constancy is not perfect.

DISCUSSION

The experimental method used in this study, asym-
metric dichoptic color matching, has frequently been
used in studies on chromatic adaptation [see Wyszecki
and Stiles (1982) for a review]. In as far as these studies
employed stimuli representing object—illuminant interac-
tions (as was actually not the most common practice),
these studies can be classified as studies on color
constancy (e.g. Burnham et al., 1952). However, the
associated theoretical developments that have emerged
over time, bear only little resemblance to the response
function we derived. Apart from methodological differ-
ences (nearly all of these studies used simultaneous
instead of successive dichoptic matching) this is probably
due to the different way of analyzing the data. The
models often have a strong empirical character, typically

TABLE 5. Comparison of predicted chromatic constancy indices (/,), as computed for the response function (LW) and the Judd-Cohen model

Jo)
D4y/Des D50/Des M o/Des M>50/Dss
Model Mean SD Mean SD Mean SD Mean SD
LW 0.767 0.077 0.814 0.089 0.540 0.177 0.402 0.177
JC 0.651 0.070 0.757 0.051 0.474 0.352 0.402 0.398
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expressed in the dimensions of CIE chromaticity space,
like for example, the seven or more equations comprising
the Helson-Judd formulation (Judd, 1940). Therefore,
despite some affinity between our study and those earlier
adaptation/constancy studies, we shall discuss our results
only in the context of the more modern, computational
developments in this field.

It is common practice, in both the older and more
recent studies of color constancy, to employ illuminant
conditions that are best suited for demonstrating the
efficacy of the effect. The present study deviates in this
respect by also including spectrally impoverished
illuminants, the two-wavelengths metamers of D,y and
Dyso (Mo and M,sp). By doing so we were able to
measure the deterioration of color constancy, which is
specifically due to the lack of spectral “capacity” of the
illuminant. The particular way in which color constancy
breaks down under these conditions, is informative as to
how spectral information is processed by the visual
system. An important issue in this respect is whether the
visual system, using the Judd—Cohen “spectral tool kit”,
may achieve complete recovery of spectral distribution
functions, as is the aim of current computational models
of color constancy.

This study shows the performance of such a computa-
tional model—what we called the Judd—Cohen model—
both under natural and unnatural illuminant conditions. It
is not self-evident that this type of model would generate
the kind of predictions we found (Fig. 6). In a qualitative
sense, of course, one may expect good color constancy in
the conditions with natural illumination (e.g. Brainard &
Wandell, 1991), and virtually no color constancy when
the light is reduced to only two wavelengths. When
comparing the chromaticities of the model predictions
(Fig. 6, open circles) with the chromaticities of the
stimuli under Dgs (Fig. 2, open circles), this is indeed
what the predictions show. However, the central question
is how accurate these predictions are borne out in the
experimental data. As shown in Fig. 6, the predictions of
the Judd—Cohen model are in the right direction, but there
is room for improvement. It is not easy to see how this
might be achieved. It is not just a matter of finding ways
of boosting the constancy index. In searching for a model
that would predict better color constancy, we also tested
the algorithm of van Trigt (1990). As described else-
where (Lucassen, 1993), application of this algorithm to
our test stimuli yielded good color constancy for our
conditions with broad-band illuminants (the latter were
reconstructed with the Judd basis spectral functions). The
associated values of the predicted chromatic constancy
index (I,) were 0.965 and 0.923 for D4o/Des and Dyso/
Dgs, which is actually better than the corresponding
values obtained for the models discussed here (see Table
5). However, the good color constancy obtained with this
algorithm was actually the reason for its relatively less
accurate predictions of what human observers sece
(Lucassen, 1993). Other computational models may face
the same problem, if designed to predict near perfect
color constancy, as may be envisaged when using larger
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numbers of (surface) spectral basis functions (Parkkinen
et al., 1989; Vrhel et al., 1994).

It is conceivable that the visual system might be
capable of better color constancy when measured under
more natural conditions and/or with better methods. Even
our “normal” (broadband) stimulus conditions might be
considered as being somewhat synthetic, in the sense that
the visual scene lacks a third dimension (no shadows and
shading), and that the appearance of the samples is
consistent with perfectly diffusing surfaces under a
spatially uniform illumination. However, these are
exactly some of the most important constraints—see
Forsyth (1990) for a complete list—that have to be met
when applying the present generation of Judd—Cohen
type models of color constancy.

As for methodology, there are indeed different ways
for measuring color constancy. One could argue that
testing the purely sensory aspect of color perception (hue,
saturation, lightness) only probes part of the underlying
mechanisms. A possible alternative is to test for the
correct recognition (rather than perception) of surface
samples, thereby ignoring possible deviations from
sensory invariance. This method was introduced by
Arend and Reeves (1986), who asked their subjects to
adjust the color of a match sample as if “cut from the
same paper” as the test sample. The subject is thereby
instructed to take into consideration that the samples are
shown under different illuminants, and thus may not
necessarily appear as having the same color. Subjects are
apparently able to follow that instruction, thereby
possibly using contextual cues, even when these are
simplified to a simple disk-annulus stimulus configura-
tion (Arend et al., 1991). However, in spite of relaxing
the definition of color constancy (sensory invariance is no
longer required) the latter studies did not achieve more
than moderate color constancy, about 60% in terms of the
chromatic constancy index (Arend et al., 1991). Other
studies also show that incomplete color constancy is the
rule rather than the exception (Reeves et al., 1989;
Tiplitz-Blackwell & Buchsbaum, 1988; Valberg &
Lange-Malecki, 1990). Considering that the visual
system apparently does not strive for perfect color
constancy, it would make sense to search for a
mechanism that actually is intrinsically incapable of
perfect color constancy. The von Kries white normal-
ization (von Kries, 1905) has this property, and, for that
reason, has sometimes been treated as inadequate for
models of color constancy (e.g. Worthey & Brill, 1986;
Dannemiller, 1993). The response function, which shares
the trichromatic gain adjustment implied in the von Kries
model, also shares the associated imperfection with
respect to color constancy.

We showed that the Judd—Cohen model also predicts
less than perfect color constancy. However, the way in
which the predictions deviate from constancy is rather
different from what the data show. There is not enough
support, particularly when considering the availability of
a simpler alternative, for the hypothesis that this model is
implemented in the visual system. This would square
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with the lack of neurophysiological evidence for
structures performing the Judd-Cohen estimates of
surface reflectance (D’Zmura & Lennie, 1986; Troost
& de Weert, 1991a). Still, we feel that more experiments
are required to test the physiological validity of
computational models based on the Judd—Cohen spectral
analysis. All that can be said on the basis of the present
(and first) test is that there is enough reason to warn
against simply accepting such models without experi-
mental validation or considering alternative approaches.

Such an alternative is a trichromatic extension of
contrast or lightness models (e.g. Hurlbert, 1986), for
which the foundation was laid in the retinex model (Land,
1986; McCann et al., 1976). Our response function
belongs to that class, but with some important modifica-
tions, as discussed in Lucassen and Walraven (1993). Its
essential feature, responding to contrast—a sound
strategy in a world where luminance varies over more
than ten decades—is consistent with the results from
other psychophysical studies on invariant (a)chromatic
vision (e.g. Arend & Goldstein, 1990; Shapley, 1986;
Wallach, 1948; Walraven et al., 1991). A system that
responds to contrast can be easily implemented by a
resetting mechanism or automatic gain control (Koender-
ink et al., 1971; Rushton, 1965; Walraven & Valeton,
1984). Such a mechanism also has the effect of removing
a steady-state signal, for which there is also psychophy-
sical evidence (Tiplitz-Blackwell & Buchsbaum, 1988;
Walraven, 1976; Whittle & Challands, 1969).

As discussed elsewhere (Shapley et al., 1990; Walra-
ven et al., 1990), the importance of contrast can also be
demonstrated at the physiological level (e.g. Enroth-
Cugell & Robson, 1966; Reid & Shapley, 1988; Shapley
& Enroth-Cugell, 1984). As for our model’s assumed
cone-specificity of the contrast response, one may expect
this to be reflected in receptive fields driven by single
cone classes. Physiological evidence for this notion is
available, but does not always exclude other interpreta-
tions. However, recently Reid and Shapley (1992) have
provided unambiguous evidence for cone-specific inputs
in both center and surround of parvocellular neurons.

In the section on Data Predictions, we compared
predictions of the experimental data on the basis of the
“Judd—Cohen model” and the “response function”. The
latter model, as described in Eq. (8) applies to colored
reflective samples (Munsell chips) on a white back-
ground, i.e. luminance decrements. Although this is a
condition frequently used in laboratory studies, the
applicability of Eq. (8) for this condition does not imply
its universal validity. As a matter of fact, in a separate
study, focusing on the luminance variable in color
constancy (Lucassen, 1993), Eq. (8) was shown to fail
when applied to predicting data relating to luminance
increments. In that same study a more general model was
derived that incorporates luminance contrast as a separate
variable, thus allowing it to describe the results obtained
from stimuli in the decrement as well as the increment
mode. However, Eq. (8) describes the present data as
accurately as the more general (but also more complex)
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model, since the latter effectively reduces to Eq. (8) for
contrasts in the range 0 < C < 1. Because of that, and also
because luminance contrast was not the central issue of
this study, Eq. (8) was our choice for describing the data,
rather than the more elaborate formula that would be
required for data varying in luminance contrast.

In conclusion, we have compared the data predictions
resulting from two approaches to explaining color
constancy, which differ in the way spectral information
is used. We have shown that, for the limited conditions of
our laboratory experiment, both the existence and
breakdown of color constancy are better described by a
mechanism responding to cone-specific contrast than by a
system that estimates illuminant and reflectance spectra.

REFERENCES

Arend, L. E. & Goldstein, R. (1990). Lightness and brightness over
spatial illumination gradients. Journal of the Optical Society of
America A, 7, 1929-1936.

Arend, L. E. & Reeves, A. (1986). Simultaneous color constancy.
Journal of the Optical Society of America A, 3, 1743-1751.

Arend, L. E., Reeves, A., Schirillo, J. & Goldstein, R. (1991).
Simultaneous color constancy: papers with diverse Munsell values.
Journal of the Optical Society of America A, 8, 661-672.

Borges, C. F. (1991). Trichromatic approximation method for surface
illumination. Journal of the Optical Society of America A, 8, 1319-
1323.

Brainard, D. H. & Wandell, B. A. (1991). A bilinear model of the
illuminant’s effect of color appearance. In Movshon, J. A. & Landy,
M. S. (Eds), Computational models of visual processing. Cambridge,
MA: MIT Press.

Bril, M. H. & West, G. (1986). Chromatic adaptation and color
constancy: A possible dichotomy. Color Research and Application,
11, 196-204.

Brunswik, E. (1928). Zur Entwicklung der Albedowahrnehmung.
Zeitschrift fur Psychologie, 64, 216-227.

Buchsbaum, G. (1980). A spatial processor model for object colour
perception. Journal of the Franklin Institute, 310, 1-26.

Burnham, R. W., Evans, R. M. & Newhall, S. M. (1952). Influence on
color perception of adaptation to illumination. Journal of the Optical
Society of America, 42, 597-605.

Cohen, J. (1964). Dependency of the spectral reflectance curves of the
Munsell color chips. Psychonomic Science, 1, 369-370.

Dannemiller, J. L. (1992). Spectral reflectance of natural objects: How
many basis functions are necessary. Journal of the Optical Society of
America A, 9, 507-515.

Dannemiller, J. L. (1993). Rank orderings of photoreceptor photon
catches from natural objects are nearly illuminant-invariant. Vision
Research, 33, 131-140.

D’Zmura, M. & Lennie, P. (1986). Mechanisms of color constancy.
Journal of the Optical Society of America A, 3, 1662-1672.

Eastman, A. A. & Brecher, S. A. (1972). The subjective measurements
of color shifts with and without chromatic adaptation. Journal of
Hluminating Engineering Society, 2, 239-246.

Enroth-Cugell, C. & Robson, J. G. (1966). The contrast sensitivity of
retinal ganglion cells of the cat. Journal of Physiology, 187, 517~
522.

Evans, R. M. (1948). An introduction to color. New York: John Wiley
and Sons.

Forsyth, D. A. (1990). A novel algorithm for color constancy.
International Journal of Computer Vision, 5, 5-36.

Foster, D. H., Craven, B. J. & Sale, R. H. (1992). Immediate colour
constancy. Ophthalmic and Physiological Optics, 12, 157-160.

Ho, J., Funt, B. V. & Drew, M. S. (1990). Separating a color signal into
illumination and surface reflectance components: Theory and
applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12, 966-977.



COLOR CONSTANCY

Hurlbert, A. (1986). Formal connections between lightness algorithms.
Journal of the Optical Society of America A, 3, 1684-1693.

Judd, D. B. (1940). Hue, saturation and lightness of surface colors with
chromatic illumination. Journal of the Optical Society of America,
30, 2-32.

Judd, D. B., MacAdam, D. L. & Wyszecki, G. (1964). Spectral
distribution of typical daylight as a function of correlated color
temperature. Journal of the Optical Society of America, 54, 1031—
1040.

Koenderink, J. J., van de Grind, W. A. & Bouman, M. A. (1971).
Foveal information processing at photopic luminances. Kybernetik,
8, 128-144.

von Kiries, J. (1995). Die Gesichtsempfindungen. In: Nagel, W. (Ed.)
Handbuch der Physiologie des Menschen (Vol. 3, pp. 109-282).
Vieweg, Braunschweig.

Land, E. H. (1986). Recent advances in retinex theory. Vision
Research, 26, 7-21.

Lucassen, M. P. (1993). Quantitative studies of color constancy. PhD.
thesis, University of Utrecht.

Lucassen, M. P. & Walraven, J. (1990). Evaluation of a simple method
for color monitor recalibration. Color Research and Application, 15,
321-326.

Lucassen, M. P. & Walraven, J. (1993). Quantifying color constancy:
Evidence for nonlinear processing of cone-specific contrast. Vision
Research, 33, 739-757.

Maloney, L. T. (1986). Evaluation of linear models of surface spectral
reflectance with small number of parameters. Journal of the Optical
Society of America A, 3, 1673-1683.

Maloney, L. T. (1992). A mathematical framework for biological
vision. Behavioral and Brain Sciences, 15, 45.

Maloney, L. T. & Wandell, B. A. (1986). Color constancy: A method
for recovering surface spectral reflectance. Journal of the Optical
Society of America A, 3, 29-33.

McCann, J. J., McKee, S. P. & Taylor, T. H. (1976). Quantitative
studies in retinex theory: A comparison between theoretical
predictions and observer responses to the “color Mondrian”
experiments. Vision Research, 16, 445-458.

Parkkinen, J. P. S., Hallikainen, J. & Jaaskelainen, T. (1989).
Characteristic spectra of Munsell colors. Journal of the Optical
Society of America A, 6, 318-322.

Reeves, A., Arend, L. E. & Schirillo, J. (1989). Color constancy in
isolated displays. Perception, 18, 529-530.

Reid, R. C. & Shapley, R. W. (1988). Brightness induction by local
contrast and the spatial dependence of assimilation. Vision
Research, 28, 115-132.

Reid, R. C. & Shapley, R. W. (1992). Spatial structure of cone inputs to
receptive fields in primate lateral geniculate nucleus. Nature, 356,
716-717.

Rushton, W. A. H. (1965). Visual adaptation. Proceedings of the Royal
Society (B), 162, 20-46.

Shapley, R. (1986). The importance of contrast for the activity of
single neurons, the VEP and perception. Vision Research, 26, 45-61.

Shapley, R., Caelli, T., Grossberg, S., Morgan, M. & Rentschler, I.
(1990). Computational theories of visual perception. In: Spillmann,
L. & Werner, J. S. (Eds), Visual perception: The neurophysiological
foundations (pp. 53-101). San Diego: Academic Press.

2711

Shapley, R. & Enroth-Cugell, C. (1984). Visual adaptation and retinal
gain control. In: Osborne, N. & Chader, G. (Eds), Progress in retinal
research (p. 3). Oxford: Pergamon Press.

Thompson, E., Palacios, A. & Varela, F. J. (1992). Ways of coloring:
Comparative color vision as a case study for cognitive science.
Behavioral and Brain Sciences, 15, 1-26.

Tiplitz-Blackwell, K. & Buchsbaum, G. {1988). Quantitative studies of
color constancy. Journal of the Optical Society of America A, 5,
1772-1780.

van Trigt, C. (1990). Smoothest reflectance functions. I. Definition and
main results. Journal of the Optical Society of America A, 7, 1891—
1904.

Troost, J. M. & de Weert, C. M. M. (1991a). Surface reflectance and
human color constancy: Comment on Dannemiller (1989). Psycho-
logical Review, 98, 143-145.

Troost, J. M. & de Weert, C. M. M. (1991b). Naming vs matching in
color constancy. Perception & Psychophysics, 50, 591-602.

Valberg, A. & Lange-Malecki, B. (1990). Colour constancy in
Mondrian patterns: A partial cancellation of physical chromaticity
shifts by simultaneous contrast. Vision Research, 30, 371-380.

Vrhel, M. J., Gershon, R. & Iwan, L. S. (1994). Measurements and
analysis of object reflectance spectra. Color Research and
Application, 19, 4-9.

Wallach, H. (1948). Brightness constancy and the nature of achromatic
colors. Journal of Experimental Psychology, 38, 310-324.

Walraven, J. (1976). Discounting the background—the missing link in
the explanation of chromatic induction. Vision Research, 16, 289-
295.

Walraven, J., Benzschawel, T., Rogowitz, B. E. & Lucassen, M. P.
(1991). Testing the contrast explanation of color constancy. In:
Valberg, A. & Lee, B. B. (Eds), From pigments to perception (pp.
369-378). New York: Plenum Press.

Walraven, JI., Enroth-Cugell, C., Hood, D. C., MacLeod, D. I. A. &
Schnapf, J. L. (1990). The control of visual sensitivity: receptoral
and postreceptoral processes. In: Spillmann, L. & Werner, J. S.
(Eds), Visual perception: The neurophysiological foundations (pp.
53-101). San Diego: Academic Press.

Walraven, J. & Valeton, J. M. (1984). Visual adaptation and response
saturation. In: van Doorn, A. J., van de Grind, W. A. & Koenderink,
J. J. (Eds), Limits in perception. Utrecht: VNU Science Press.

Whittle, P. & Challands, P. D. C. (1969). The effect of background
luminance on the brightness of flashes. Vision Research, 9, 1095~
1110.

Worthey, J. A. & Brill, M. H. (1986). Heuristic analysis of von Kries
color constancy. Journal of the Optical Society of America A, 3,
1708-1712.

Wyszecki, G. & Stiles, W. S. (1982). Color science, concepts and
methods, quantitative data and formulae, 2nd edition. New York:
John Wiley.

Acknowledgements—This study was supported by the Netherlands
Organization for Scientific Research (NWO) through the Foundation
for Biophysics. We thank Dr J. J. Vos for commenting on an earlier
version of the manuscript.



