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Abstract

We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space.

The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated

the new colour image fidelity metric through observer experiments in which subjects ranked images according to perceived distortion. The

metric correlates strongly with human perception and can therefore be used to assess the performance of colour image coding and

compression schemes, colour image enhancement algorithms, synthetic colour image generators, and colour image fusion schemes.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In many areas of research and development that are

concerned with digital imagery there is a real need for a

digital metric that quantifies how distorted a processed

colour image appears relative to the original version of the

same image, as perceived by a human observer. For

instance, in computer graphics, we may wish to compare

the degree of photorealism of two different rendering

methods, or to evaluate visible errors between a synthetic

and a real scene. In image coding, we may need to evaluate

the results of two different compression methods. In image

processing, we may need to assess the performance of a new

colour image enhancement technique. In false-colour

multispectral image fusion, we may need to quantify the

degree of photorealism of fused imagery. Unfortunately,

common metrics like the root mean square error (RMSE)

are not viable for these tasks because the human visual

system does not compare images this way [14]. Psycho-

physical evaluation of different image processing tech-

niques is tedious, expensive, and difficult to automate.

Hence there is a great need for a validated computational

image fidelity metric that correlates with human perception

and that can be used for automatic optimization of

the parameters involved in different image processing and

rendering techniques.

Over the years a large number of objective metrics have

been proposed to assess image and video fidelity [1–4,7–9,

11,19–26,28,30,32,33,35,37,39,42,43,45–47]. For an over-

view of different metrics see [3,49]. Ironically, the metrics

that are most widely applied today, like the RMSE or the

peak signal-to-noise ratio (PSNR), are also the ones that

correlate least with human perception [12,13,15–18,29,31,

34,40,51]. Human visual system models are more success-

ful, but they are not widely used, since they generally are

computationally complex.

Most of the digital image distortion metrics in the

literature apply to grayscale images. Only a few studies

address colour image fidelity metrics [4,25,27,28,42,48,48,

50]. Grayscale image fidelity metrics can in principle be

generalized to colour image fidelity metrics by applying

them to the three (RGB) colour channels individually, and

then weighing and combining the errors in the different

channels together. However, this direct approach does not

relate to human perception. The RGB representation is

based on primary relative colour. This space does not

represent colour as perceived and analyzed by the human

visual system. The human visual system uses three paths to

analyze colour images: one for achromatic information and

two for chromatic contrast signals. As a result, the

individual channels of an RGB colour image are percep-

tually highly correlated. Hence, the RGB image should first
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be transformed into a perceptually uncorrelated colour

space before further analysis is performed.

Most of the algorithms used the literature to quantify

the distortion of a processed grayscale image relative to

its original version are designed for some special types of

distortions, such as blocking artifacts [24,35,37]. Wang

and Bovik [44] recently introduced a general grayscale

image fidelity metric that quantifies a whole range of local

image distortions. The quality index is computationally

simple and correlates with the subjective evaluations of

human observers for a wide variety of distortions. Here

we show that this metric can be extended to colour

imagery, by applying it to the individual channels of a

colour image in the newly introduced perceptually

decorrelated lab colour space [36], and by combining

the results from the individual channels into a weighted

vector mean.

2. The grayscale image fidelity metric

Wang and Bovik [44] recently introduced a universal

image fidelity metric Q that quantifies the distortion of a

processed image relative to its original version. The

distortion metric is defined as a combination of three

factors: loss of correlation, luminance distortion, and

contrast distortion. Let x ¼ {xili ¼ 1; 2;…;N} and y ¼

{yili ¼ 1; 2;…;N} be the original and processed image

signals, respectively. The fidelity index Q is then given by:

Q ¼
sxy

sxsy

2�x�y

ð�xÞ2 þ ð�yÞ2
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y

ð1Þ
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The dynamic range of Q is [21,1]. The maximal value 1

only occurs when both images are identical, i.e. yi ¼ xi for

all i ¼ 1; 2;…;N: The minimal value 21 occurs when yi ¼

2�x 2 xi for all i ¼ 1; 2;…;N: The first component in Eq. (1)

is the correlation coefficient between x and y; which

measures the degree of linear correlation between both

images, and has a dynamic range of [21,1]. The maximal

value 1 is obtained when yi ¼ axi þ b for all i ¼ 1; 2;…;N;

where a and b are constants and a . 0: Even if x and y are

linearly related, there may still occur relative distortions

between them. These are evaluated in the second and third

components. The second component measures how close

the mean luminance both images are, and ranges between

[0,1]. It equals 1 when �x ¼ �y: Since sx and sy can be

regarded as estimates of the contrast of x and y; the third

component measures how similar the contrasts of both

images are. It also ranges from [0,1]. The highest value 1 is

obtained if and only if sx ¼ sy:

In practice we usually want to characterize an entire

image using a single overall image fidelity measure.

However, image fidelity is often spatially variant, meaning

that different image regions may have different types of

distortions. It is therefore more appropriate to measure

statistical properties locally and combine them into a

single measure. Following Wang [44] we therefore

compute the image fidelity index Q over local image

regions using a sliding window approach. Starting from

the top-left corner of the image, a sliding window of size

8 £ 8 moves pixel by pixel horizontally and vertically

through all the rows and columns of the image until the

bottom-right corner is reached. At the jth step in this

procedure the local fidelity index Qj is computed over the

area of the 8 £ 8 sliding window. If the total number of

steps is equal to M; the overall image fidelity index is

given by

Q ¼
1

M

XM

j¼1

Qj ð2Þ

3. The colour image fidelity metric

In this section we extend the grayscale fidelity metric Q

to include colour by applying it to the individual dimensions

of a perceptually decorrelated colour space, and combining

the individual components in a (weighted) vector mean. The

rationale for this approach is the fact that the human visual

system processes the retinal image in three decorrelated

visual channels: one luminance channel and two colour

opponent channels. As a result, luminance and colour

distortions will contribute independently to perceived image

fidelity, and should therefore be calculated independently

before combining them into a single overall perceived

image fidelity metric.

The common RGB image representation is based on

primary relative colour. This space does not represent

colour as perceived and analyzed by the human visual

system. In RGB space, there is a strong correlation between

the individual image channels. For instance, most pixels will

have large values for the red and green channels if the blue

channel is large. The human visual system encodes the

chromatic signals conveyed by the three types of retinal

cone photoreceptors in an opponent fashion. This colour

opponency is often interpreted as an attempt to remove

correlations in the signals of different cone types that are

introduced by the strong overlap of the cone spectral

sensitivities [5]. Ruderman et al. [36] recently derived the

perceptually decorrelated lab colour space from a principal
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component transform of a large ensemble of hyperspectral

images that represents a good cross-section of natural

scenes.

In the following sections we first discuss the RGB to lab

transform. Then we construct the colour fidelity metric by

applying the grayscale metric Q to each of the channels in

the lab colour space.

3.1. The RGB to lab transform

First the RGB tristimulus values are converted to device

independent XYZ tristimulus values. This conversion

depends on the characteristics of the display on which the

image was originally intended to be displayed. Because that

information is rarely available, it is common practice to use

a device-independent conversion that maps white in the

chromaticity diagram to white in RGB space and vice versa

[10].

X

Y

Z

2
664

3
775 ¼
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2
664

3
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The device independent XYZ values are then converted to

LMS space by

L

M
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2
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Combination of Eqs. (3) and (4) results in

L

M

S

2
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3
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3
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2
664

3
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The data in this colour space shows a great deal of skew,

which is largely eliminated by taking a logarithmic trans-

form:

L ¼ log L M ¼ log M S ¼ log S ð6Þ

The inverse transform from LMS cone space back to RGB

space is as follows. First, the LMS pixel values are raised to

the power ten to go back to linear LMS space. Then, the data

can be converted from LMS to RGB using the inverse

transform of Eq. (5):

R

G

B

2
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0:0497 20:2439 1:2045

2
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3
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2
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3
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Ruderman et al. [36] recently derived a colour space,

called lab; which effectively minimises the correlation

between the LMS axes. This result was derived from

a principal component transform to the logarithmic LMS

cone space representation of a large ensemble of

hyperspectral images that represented a good cross-section

of natural scenes. The principal axes encode fluctuations

along an achromatic direction ðlÞ; a yellow-blue opponent

direction ðaÞ; and a red-green opponent direction ðbÞ: The

resulting data representation is compact and symmetrical,

and provides automatic decorrelation to higher than

second order.

Ruderman et al. [36] presented the following simple

transform to decorrelate the axes in the LMS space:

l

a
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If we think of the L channel as red, the M as green, and S as

blue, we see that this is a variant of a colour opponent

model:

Achromatic / r þ g þ b

Yellow-blue/ r þ g 2 b

Red-green / r 2 g

ð9Þ

The resulting data representation is compact and symmetri-

cal, and provides automatic decorrelation to higher than

second order.

3.2. Construction of the colour fidelity metric

The colour fidelity metric Qcolour is defined as:

Qcolor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wlðQlÞ

2 þ waðQaÞ
2 þ wbðQbÞ

2
q

ð10Þ

where Ql;Qa;Qb represent, respectively, the fidelity factors

given by Eq. (2), computed for each of the individual lab

colour channels, and wl;wa;wb are the corresponding

weights attributed to the perceived distortions in each of

these channels. The Q values corresponding to the image

distortions used in this study were always positive. Eq. (10)

is designed in analogy to most modern colour difference

equations [6].

4. Observer experiments

To assess the agreement between our colour image

fidelity metric and human visual perception we performed

observer experiments in which subjects ranked images

according to perceived distortion. The distortions were

produced by quantizing the original images along each of

the individual dimensions in the perceptually decorrelated

lab colour space. Since there are many nonlinearities in the

way the visual system responds to the retinal image, we
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cannot expect a linear relation between the colour image

fidelity metric and the perceived amount of distortion.

However, since the metric does increase monotonically with

the perceived amount of distortion, it induces a ranking

according to the amount of distortion. This ranking should

correlate with the ranking produced by the human

observers.

4.1. Stimuli

The two original 24 bits colour reference images used

in this study are shown in Fig. 1. These images were

selected because they show a significant amount of spatial

detail on different levels of resolution in combination with

a large variation in colours. The ‘Mandrill’ image is

512 £ 512 pixels in size, and the ‘parrots’ image is

384 £ 256 pixels in size, each pixel being represented by

three bytes (one for each of the R,G, and B channels). For

each reference image, a set of degraded images was

constructed as follows. First, the original image was

transformed into the perceptually decorrelated lab

representation. In this space, the individual channels of

the reference image were progressively and uniformly

quantized. Uniform quantization was performed by

dividing the colour space range of the original images

into a given number of equally large intervals. Coeffi-

cients inside an interval were attributed the value of the

lower bound of the interval. The set of quantization

intervals was successively chosen such that the fidelity

index Q from Eq. (2) was approximately evenly

distributed between 0.1 and 0.9. Finally, the resulting

quantized images were transformed back to RGB space

for display.

The effects of uniform quantization in the lab colour

space are illustrated in Table 1. This table shows the image

of a colour wheel for a range of different quantization levels

along the individual dimensions in the lab colour space.

The effect of quantization along the l dimension is a

reduction of the mean luminance of the image. Quantization

along the a and b dimensions results in an overall colour

shift along, respectively, the yellow-blue and red-green

opponent colour directions. The effects of lab quantization

applied to the two reference images from Fig. 1 are shown in

Tables 2 and 3, respectively.

We used two different image sets. Images in the first set

were quantized in a single channel only (l; a or b), and in

seven progressive steps. Images in the second set were

distorted in two channels simultaneously (either in l and a; l

and b; or a and b), and again in seven steps. As a result,

each of the two original reference images has 21

corresponding degraded versions in both sets (resulting

from the seven quantization steps in, respectively, each of

the three lab channels in the first set, and for each of the

three combinations of two individual channels in the second

set).

We printed colour hardcopies of the reference images

and their corresponding quantized representations on high

fidelity glossy photographic paper, using a calibrated 600

dpi laser printer. The printed images were 7 £ 7 cm2 in size.

4.2. Subjects

Subjects were trained observers, men and women

between the ages of 18 and 60. All had normal or

corrected-to-normal vision, and no known colour

deficiencies.

4.3. Experimental design

We collected rank ordering data from subjects on the sets

of printed colour images. First, the subjects were given an

original (unprocessed) image that served as a reference.

Then, on each run, subjects were handed a randomly

ordered set of images, corresponding to progressively

quantized versions of the reference image. The subjects

Fig. 1. The original 24 bits RGB color images used in the experiments. The

first image (a) represents a parrot, and the second image (b) shows the face

of a Mandrill monkey.
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Table 1

Illustration of the effects of uniform quantization in the lab colour space

This table shows the number (#) of quantization levels and the associated fidelity factor for each of the three lab channels of progressively quantized

images of a.colour wheel. Note that quantization in the lab space corresponds to a reduction of the available number of levels in, respectively, the luminance,

yellow-blue and red-green colour opponent dimensions.
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were asked to rank each series of degraded (quantized)

colour images by how similar each image was in

comparison to the given reference image. The subjects

had the ability to change, as required, the classification that

they had already done by doing permutations between

images until all images were ranked. They had no constraint

of time to do this task. We asked the subjects to keep the

images on a viewing stand as they sorted them and to keep

their viewing distance fixed at approximately 30 cm. At this

distance the visual angle of the images is about 48.

Table 2

The parrot images used in the observer fidelity ranking experiment

This table shows the number (#) of quantization levels and the associated fidelity factor for each of the three lab channels.
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Table 3

The Mandrill images used in the observer fidelity ranking experiment

This table shows the number (#) of quantization levels and the associated fidelity factor for each of the three lab channels.
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The prints were presented to the observers in a Macbetch

SpectraLight II booth, and thus viewed under homogeneous

lighting. The luminance reflected from the print was

maximally 450 cd/m2 (white paper). The colour temperature

of the illuminant is approximately 6430 K.

To measure how close the rankings produced by the

human observers agree with the ranking induced by the

fidelity metric we computed the coefficient Tc; which

corresponds to the correlation between the set of

observer rankings and the ranking induced by the metric

[38]. Tc; is the average of the Kendall rank-order

correlation coefficients between each ranker and the

metric ranking.

We performed three different experiments:

Experiment 1. In the first experiment, 16 observers

ranked seven images that were distorted in a single colour

channel only, for each of the colour channels separately and

consecutively.

Experiment 2. In the second experiment, four subjects

ranked a mixed subset of 12 of the images used in the first

experiment, such that each set contained four progressively

quantized versions of the original image for each of the

three colour channels.

Experiment 3. In the third experiment, four observers

ranked 21 images, corresponding to seven progressively

quantized versions of the original image for each of the

three colour channels. The images were selected such that

the fidelity metric Q was well distributed for each of the

individual colour channels.

4.4. Results

The results of Experiment 1 are shown in Fig. 2. In this

experiment the images were distorted in a single channel

(l; a or b) only, as described in Section 4.1. The subjects

ranked the seven images for each of the three channels

separately. Fig. 2 shows that a good correlation between

the fidelity metric Q and the average ranking is obtained.

Table 4 presents the correlation between the observer

rankings and the ranking induced by the computed image

fidelity metric, for, respectively, the l; a and b colour

channels of the two test images. The correlation

coefficient Tc; which can take on values between 0 (no

agreement) and 1 (identical rankings), ranges between

0.83 and 0.99. This indicates significant agreement, at the

1% level, between the observer rankings and the ranking

induced by the metric. To test the hypothesis that this

observed agreement in rankings exceeds what one would

expect if the rankings had been made randomly, we

computed the z statistic. Since the probability of obtaining

a z value greater than the computed values is p ! 0:00001

we may conclude with a high degree of confidence that

the raters as a group show strong agreement with the

metric ranking. After establishing this fact, we decided to

use a smaller number of subjects in the rest of the

experiments.

The results of Experiment 2 are shown in Fig. 3. For this

experiment we selected 12 images out of the overall set of

21 images deployed in Experiment 1, such that the fidelity

metric in each channel was well distributed. The subjects

ranked these 12 (mixed up) images with respect to their

perceived fidelity. The data indicate that the fidelity levels

of the three channels start to compete. At the same Q value,

distortions in the l channel are attributed the lowest ranking,

followed by the distortions in the a channel and the

b channel, respectively. Or, in other words, distortions in

Fig. 2. Results of Experiment 1: the fidelity ranking experiment for

quantization along each of the lab colour channels individually. Results are

shown for each of the two test images (Parrots and Mandrill). The average

subjective ranking is plotted as a function of the image fidelity index Q;

resulting from Eq. (2), computed for the individual and corresponding lab

colour channel.

Table 4

Correlation between the observer rankings and the ranking induced by the

image fidelity metric (as expressed by the correlation coefficient Tc; see

text)

Parrots Mandrill

l 0.96 0.99

a 0.90 0.83

b 0.83 0.85
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the b channel are less visible than the same amount of

distortion in the a channel and the l channel.

The results of Experiment 3 are shown in Fig. 4. In this

experiment we used 21 images that were distorted in two

channels simultaneously (either in l and a, l and b; or a

and b). The subjects ranked these 21 (mixed up) images

with respect to their perceived fidelity. Although this task

was considerably more difficult than the one in Exper-

iments 1 and 2, it could still be performed with

satisfaction. We obtained the objective rankings as

follows. First, we computed the colour fidelity metric

Qcolour (Eq. (10)) for different values of the weighting

factors wl;wa and wb: The values at which the Spearman

rank-order correlation coefficient (between objective and

average subjective ranking) was at maximum are,

respectively, wl ¼ 3:3;wa ¼ 1:3 and wb ¼ 0:9 for the

Parrot image, and wl ¼ 2:8;wa ¼ 0:9 and wb ¼ 0:8 for the

Mandrill image. Apparently, the fidelity metric for l

dominates the colour fidelity metric.

5. Discussion

In this paper we extend a recently introduced universal

grayscale image quality index to a newly developed

perceptually decorrelated colour space. The resulting colour

image fidelity metric quantifies the distortion of a processed

colour image relative to its original version. The metric is

computationally simple, which makes real-time implemen-

tation feasible.

We evaluated the new colour image fidelity metric

through observer experiments in which subjects ranked

images according to perceived distortion. The metric

correlates strongly with human perception. Hence, it

provides a meaningful objective measure of overall image

fidelity, and can therefore be used to assess the

performance of colour image coding and compression

schemes, colour image enhancement algorithms, synthetic

colour image generators, and colour image fusion

Fig. 3. Results of Experiment 2: the fidelity ranking experiment for a mixed

subset of images that have been quantized along each of the lab colour

channels individually. Results are shown for each of the two test images

(Parrot and Mandrill). The average subjective ranking is plotted as a

function of the image fidelity index Q; resulting from Eq. (2), computed for

the individual and corresponding lab colour channel.

Fig. 4. Results of Experiment 3: the fidelity ranking experiment for images

that were distorted in two channels simultaneously (either in l and a; l and

b; or a and b). Results are shown for each of the two test images (Parrots

and Mandrill). The average subjective ranking is plotted as a function of the

computed objective image fidelity ranking induced by the image fidelity

index given in Eq. (10).
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schemes. This minimises the need for time-consuming and

intricate subjective tests in many digital colour image

processing applications.

There are a number of issues in the evaluation of the

new colour image fidelity metric that are worth further

investigation. The relative image fidelity ranking technique

used in the present study forces the observers to collapse

the ensemble of local fidelity variations over the entire

image plane into a single judgment. Observers may use

different individual criteria to weigh the relative import-

ance of image distortions. These criteria may depend on

the type of distortion and on the composition of the local

image region. We may gain insight into the way these

factors affect the overall perceived image fidelity by giving

the observer a clear instruction on how the judgments

should be made. For example, the observer can be

instructed to judge image fidelity based on the worst

artifact. Or, alternatively, to only judge the fidelity of

smooth image regions, or the fidelity of edge regions, etc.

When artifacts are suprathreshold, such instructions will

change the observer’s ratings. Consequently, the instruc-

tions given to the observer should reflect the technique

used in the fidelity metric to sum errors across space and

assign a fidelity rating to the image. Another way of

handling this issue is to divide the image into small

subregions and have the user specify image fidelity for

these different image regions [13]. For some observers the

fidelity of the whole image is quite as important as the

fidelity of each image element; whereas for others the

colour appearance of the background elements is more

relevant than the colour appearance of the object elements

[41]. Within the scope of this study only a small number of

distortions could be investigated. Future research will focus

on the perceptual attributes that prevail in the perceptual

fidelity judgement, and the effects of their spatial

distribution (image composition).
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