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Saliency of color image derivatives: a comparison
between computational models and human

perception
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In this paper, computational methods are proposed to compute color edge saliency based on the information
content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical
experiment, and on a more complex task of salient object detection in real-world images. The psychophysical
experiment demonstrates the relevance of using information theory as a saliency processing model and that
the proposed methods are significantly better in predicting color saliency (with a human-method correspon-
dence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results
from salient object detection confirm that an early fusion of color and contrast provide accurate performance to
compute visual saliency with a hit rate up to 95.2%. © 2010 Optical Society of America
OCIS codes: 330.1720, 110.2960, 330.5510, 150.1135, 330.1880.
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. INTRODUCTION
uman visual attention is for an important part
ottom-up driven by the saliency of image details. An im-
ge detail appears salient when one or more of its low-
evel features (e.g., size, shape, luminance, color, texture,
inocular disparity, or motion) differs significantly from
ts variation in the background. Saliency determines the
apability of an image detail to attract visual attention
and thus guide eye movements) in a bottom-up way [1,2].
urrent models of human visual search and detection
uggest that this preattentive stage indicates potentially
nteresting image details, whereupon the focus of atten-
ion is sequentially shifted to each of these regions and
he serial stage is deployed to analyze them in detail [3].
omputational saliency could correspondingly assist in

he efficient assessment of image content.
Computational saliency models based on information

heory have been shown to successfully model human sa-
iency from local image features [4–6]. This theory states
hat feature saliency is inversely related to feature occur-
ence, i.e., rare features are more informative and there-
ore more salient than features that occur more fre-
uently. It is indeed plausible that interesting image
etails correspond to locations of maximal information
ontent, a measure closely related to local feature con-
rast [7,8]. Consequently, recent models of human visual
xation behavior assume that saliency-driven free view-

ng corresponds to maximizing information sampling
9,10]. These models have successfully been deployed to

odel human fixation behavior, pop-out, dynamic sa-
iency, saliency asymmetries, and to solve classic com-
uter vision problems like dynamic background subtrac-
ion [9,8,11].

Because of its importance for many practical applica-
1084-7529/10/030613-9/$15.00 © 2
ions, we focus on bottom-up saliency in this paper. The
arallel, preattentive, or bottom-up stage of human vision
s thought to guide a serial (computationally intensive)
ttentive or top-down stage. Among all features that con-
ribute to a detail’s saliency, orientation and color are gen-
rally considered to be the most significant ones [12–14].
onsequently, most current saliency models are based on

ocal color and orientation contrast (e.g., [15–18]). In gen-
ral, individual saliency maps for these features are com-
uted. Subsequently these maps are merged in a late
tage into a single overall saliency map, also called late
usion of features [16]. However, there exist evidence that
he human visual system combines low-level features in
n early stage [2,19]. Information theoretical methodol-
gy can be used to compute the saliency of color edges by
ombining chromaticity and contrast in an early stage.

Therefore, in this paper, a method is proposed that
omputes image saliency from the information content
the frequency of occurrence) of chromatic derivatives.
he method is based on the observation that in natural

mages, color transitions of equal probability (i.e., isosa-
ient transitions) form ellipsoids in decorrelated color
paces [20]. The transformation that turns these ellipsoi-
al isosaliency surfaces into spherical ones (called the
olor saliency function) ensures that vectors of equal
ength have equal information content and thus equal im-
act on the saliency function. In [20] the statistics of the
olor transitions are based on a collection of images. In
ddition, we investigate transformations based on color
ransition statistics of a single image.

To investigate the correspondence between our compu-
ational saliency model and human visual perception, we
erform a psychophysical experiment. The aim of the ex-
eriment is to verify the proposed model on a purely
010 Optical Society of America
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ottom-up saliency task in a controlled environment
here possible effects of cognitive top-down mechanisms
re avoided. As a second experiment we validate our sa-
iency model on the task of salient object detection in real-
orld images and compare it with existing methods. We

all this task high-level saliency to distinguish it from sa-
iency detection that is purely bottom-up. In high-level sa-
iency tasks, the bottom-up saliency is complemented
ith top-down mechanisms, such as image semantics. As
ottom-up color saliency is one of the mechanisms con-
ributing to high-level saliency, a correlation between
hem is to be expected.

The paper is organized as follows. In Section 2, three
omputational saliency methods are proposed, comple-
ented by a multiscale approach. In Section 3, the

ottom-up saliency is evaluated by a psychophysical ex-
eriment. In Section 4, the proposed computational meth-
ds are evaluated on the high-level saliency task of sa-
ient object detection in real-world images. Finally, in
ection 5 conclusions are drawn.

. SALIENCY OF COLOR EDGES
n this section, three different computational methods are
resented to compute color edge saliency based on the in-
ormation content of color edges: (1) a local version that
stimates color edge saliency from a single image, (2) a
lobal version that uses a collection of images to compute
olor edge saliency, and (3) a version in which the eigen-
ectors of the transformation matrix are restricted to the
pponent color space [see Eq. (7)]. Finally, a multiscale
pproach is presented to improve saliency detection in
eal-world images.

. Computational Saliency Measure Based on
hromatic Transitions
he color saliency method by Van de Weijer et al. [20] is

nspired by the notion that a feature’s saliency reflects its
nformation content as follows. Consider an image f
�R ,G ,B�t. The information content, I, of an image de-
ivative fx, according to information theory, is given by
he logarithm of its probability p:

I = − log�p�fx��. �1�

ence, color image derivatives that are equally frequent,
rom now on named isosalient derivatives, have equal in-
ormation content. In Fig. 1, the distribution of RGB de-
ivatives for the 40,000 images of the COREL data set is
iven. The isosalient derivatives form an ellipsoidlike dis-
ribution, of which the longest axis is along the luminance
irection. This indicates that equal displacements (i.e.,
oints with equal norm of the chromatic derivatives) are
ore informative along the color directions (perpendicu-

ar to the luminance) than in the luminance direction.
To map image derivatives to a saliency map, a function
is required that maps isosalient derivatives to equal sa-

iency. We choose to map the derivatives to a new space
here isosalient derivatives have equal norms:

p�fx� = p�fx�� ↔ �g�fx�� = �g�fx���,
p�fx� � p�fx�� ↔ �g�fx�� � �g�fx���. �2�

he function g is called the saliency transformation,
hose norm can now be interpreted as the saliency. Note

hat this only puts a weak constraint on the color saliency
unctions g. It is required that derivatives with equal in-
ormation content are mapped to vectors with equal norm.

more restrictive constraint would be to require the sa-
iency function to map derivatives to a space in which
heir norm is proportional to their information content.
his further improves saliency detection. However, this is
ot a uniquely color phenomenon and holds as well for lu-
inance contrast saliency.
Here we model the surface of isosalient derivatives

ith an ellipsoid. We estimate the parameters of the el-
ipsoid by the covariance matrix N:

N = fx�fx�t = �RxRx RxGx RxBx

RxGx GxGx GxBx

RxBx GxBx BxBx
� , �3�

here the matrix elements are computed by

RxRx = �
i�S

�
x�Xi

Rx�x�Rx�x�, �4�

here S is a set of images, and Xi is the set of pixel coor-
inates x in image i. Matrix N describes the derivative
nergy in any direction v̂. This energy is computed by
�v̂�= v̂tNv̂. Matrix N can be decomposed into eigenvector
atrix U and eigenvalue matrix � according to N
U��Ut. This provides the saliency function g:

g�fx� = �−1Utfx. �5�

ubstitution of Eq. (5) into Eq. (3) yields

g�fx��g�fx��t = �−1UtU��UtU�−1 = I, �6�

eaning that the covariance matrix of the transformed
mage is equal to the identity matrix. This implies that
he derivative energy in the transformed space is equal in
ll directions.

ig. 1. (Color online) Histogram of the distribution of RGB de-
ivatives computed for the 40,000 images of the COREL image
ata set. The iso-salient derivatives form an ellipsoidlike distri-
ution, of which the longest axis is along the luminance
irection.
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In this paper, three computational saliency methods
re considered that are derived from information theory.
he first method corresponds to the one introduced in [20]
nd will be evaluated in Section 3 with a psychophysical
xperiment. Additionally, the aim is to investigate the
erformance of two new methods to compute the color sa-
iency transformation.

• Global opponent color-space saliency [20]: Saliency is
efined as the rarity of color derivatives in a set of im-
ges, with the additional restriction that the eigenvectors
f the saliency matrix coincide with the vectors that span
he opponent color space. In this case,

Ut =�
1

	2

− 1

	2
0

1

	6

1

	6
−

2

	6

1

	3

1

	3

1

	3

� . �7�

he opponent color space decorrelates the chromatic
hannels from the luminance channel. The first channel is
he red–green channel, the second the blue–yellow chan-
el, and the third the luminance component. The color sa-

iency transformation Mo
c =�−1Ut only differs in the scal-

ng of the axes as given by the eigenvalue matrix �,
hose values can be computed with diag���
diag
sqrt�Utfx�Utfx�t��= �� ,� ,��, computed similarly as

n Eqs. (3) and (4). The diag function reduces a matrix to
ts diagonal elements. The same eigenvalue matrix is ap-
lied to all images.
• Global color saliency: Here, saliency is defined as the

arity of the color derivatives over a set of images. Hence,
single matrix Mg

c is computed based on the color deriva-
ives of all images in a data set (S contains all images).
he same saliency matrix is then applied to all images in
he data set.

• Local color saliency: Saliency is defined by the rarity
f the color derivatives in a single image. Thus, when ap-
lied to a set of images, each image is transformed by its
wn individual saliency matrix Ml

c (where c stands for
omputational and l for local). For its computation, S in
q. (4) contains only a single image.

n example of local and global computational saliency is
iven in Fig. 2. Based on global saliency, the edges of the
ed American flag are considered salient. However, for lo-
al saliency, which is computed from the statistics of this
mage, the red edges are not considered salient. Instead
he brown edges of the pastry are considered more sa-
ient. This is in correspondence with human assessment
f this image [21].

. Multiscale Color Saliency
n natural scenes, salient regions appear at multiple
cales. For this reason we propose to extend our compu-
ational saliency models with a multiscale approach.
aps computed at multiple scales can be combined into a

ingle saliency map as follows:
s�x� = �
���

�
x��N�x�

�M��f��x� − f��x����, �8�

here f� denotes the Gaussian smoothed color image at
cale �, and �= 
1,2,4,6,8,10,12,14�. N�x� is a 9�9
eighborhood window. M� is the transformation matrix
omputed from Gaussian derivatives of scale � and can be
ny of the three methods mentioned before: Ml

c, Mg
c, or

o
c. Note that leaving out M from Eq. (8) results in the
ultiscale contrast approach proposed by Liu et al. [21].
n example of a multiscale color saliency map is given in
ig. 2. The edges of the salient pastry are considered
ore salient by the multiscale color saliency map.

. PSYCHOPHYSICAL EVALUATION OF
OTTOM-UP SALIENCY

n this section, a psychophysical experiment is presented
hat allows us to quantify the accuracy with which infor-
ation theory (represented by the computational saliency
easures) predicts bottom-up saliency in humans. Here
e regard saliency as the degree with which an item

tands out from its surroundings.
Different psychophysical methods for measuring

ottom-up saliency exist, like eye tracking and fixation
nalysis (e.g., [22]), reaction time analysis (e.g., [2]), and
arget location (e.g., [23]). We decided to measure the
elative saliency of simple center-surround test patterns
hat we synthesized with specified distributions of chro-
atic transitions (Fig. 3). These patterns have been de-

igned with the aim that they do not show any familiar
bject or shape and thus avoid possible effects of cognitive
op-down mechanisms. Two center-surround patterns, dif-
ering only in chromatic distribution of the centers, are
hown side by side to the observers. They decide which of
he two centers stands out most from the common sur-
ound, i.e., has a higher relative saliency [24].

ig. 2. (Color online) (a) Original image, (b) global color sa-
iency, (c) local color saliency, (d) multiscale local color saliency.
lobal saliency amplifies the red edges of the flag. Based on the

ocal statistics of this image, the local saliency increases the sa-
iency of the pie. The multiscale approach suppresses the colorful
dges of the American flag further; therefore, the pie is better de-
ected. This corresponds to the part of the scene selected as the
ost salient by humans [21].
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The color patterns are defined in the CIELAB color
pace [25] with the goal to specify colors in terms of a per-
eptual space and enable comparison of the results with
ther studies [26]. Given a certain distribution of L*a*b*

alues in the surround, the saliency of the center will de-
end on the difference between the L*a*b* distribution of
he center and that of the surround. The more the two dis-
ributions differ, the higher the chromatic contrast, which
sually results in higher experimental measurements of
aliency. The aim is to determine how strong this saliency
epends on the underlying L*a*b* distributions (and asso-
iated edge transition distributions). We therefore trans-
orm these distributions in a systematic manner. For ex-
mple, under one condition we let the distribution of the
urround correspond to the distribution of edge transi-
ions as determined from the COREL image data set.

The data from our observers is compared with predic-
ions on the basis of our models of computational saliency.
he latter are applied to the same center-surround im-
ges as presented to our observers. A prediction of the
enter-surround pattern with the higher relative saliency
s simply obtained by comparison of the model outputs for
he two center-surround images.

. Method

. Subjects
ive men and three women (ages ranging from 22 to 29)
articipated in our experiment. They had normal or
orrected-to-normal acuity and normal color vision as con-
rmed by testing on the HRR pseudoisochromatic plates
4th edition). Subjects were unaware of the purpose of the
xperiment.

. Apparatus
timuli were presented on a calibrated LCD monitor

Eizo, ColorEdge CG211) operating at 1600�1200 pixels
0.27 mm dot pitch) and 24-bit color resolution. Using a
pectrophotometer (GretagMacbeth, Eye-one) the monitor
as calibrated to a D65 white point of 80 cd/m2, with
amma 2.2 for each of the three color primaries. CIE 1931
,y chromaticity coordinates of the primaries were �x ,y�
�0.638,0.322� for red, (0.299,0.611) for green, and

0.145,0.058) for blue, respectively, closely approximating
he sRGB standard monitor profile [27]. The spatial uni-
ormity of the display, measured relative to the center of

ig. 3. (Color online) (a) Example of a synthetic image with speci
he surround. (b) Two different transformations of the color distr
hophysical experiment, showing two center-surround color patte
ubjects indicate which of the two centers stands out most from
he monitor, was 	Eab
* �1.5 according to the manufactur-

r’s calibration certificates. This type of display was
hown to provide color reproduction errors of the order of
just noticeable difference [26], accurate enough for the

ype of experiment described in this paper.

. Stimuli and Design
igure 3(c) shows the layout of the experiment. Two
enter-surround patterns, differing only in the center, are
hown side by side. We used four surrounds as listed in
able 1. The statistics (color edge distribution) of the first
urround, labeled SL, correspond with the statistics of
atural images contained in the COREL image data set.
rom Fig. 1 it is observed that for the COREL data set we
ave five times more transitions (edges) in intensity than
ransitions in RG and BY. In L*a*b* space this corre-
ponds to �LCorel

=54, �bCorel
=27, and �aCorel

=16.
The second and third surround, Sa and Sb, were ob-

ained by switching the distributions along the L* and a*

xes, and along the L* and b* axes, respectively. The last
urround, Seq, has equal distributions (i.e., amounts of in-
ormation) in all three directions.

To create the centers in the center-surround patterns,
e transform the distribution of the surround by multi-
lying � for each axis by a certain value. Each surround
isted in Table 1 was combined with 13 different center
istributions. These center distributions were obtained by
pplying the transformation

�
�L�

�a�

�b�
� = �

� 0 0

0 � 0

0 0 �
��

�L

�a

�b
� . �9�

he first transformation, labeled C1, had values �0
��aCorel

�−1, �0= ��bCorel
�−1, and �0= ��LCorel

�−1. This trans-
ormation is predicted by our computational saliency
easure Ml

c (computational local transformation, which
s here fixed to L*a*b* space) as the most salient between
ll possible transformations. Five more center patches
C2–C6� are generated with �0, �0, and �0 interchanged.
enters CL, Ca, and Cb were created by maximizing the
nergy of the axis indicated by the subscript, while the
nergy in the remaining two axes are equal. Centers CLa,
Lb, and Cab were created by maximizing the energy of

wo axes (indicated by the subscripts). Finally, center C

stribution of color transitions in CIELab color space, which forms
n shown in (a) form two different centers. (c) Layout of the psy-
e by side. The surrounds are identical, the centers are different.
rround.
fied di
ibutio
rns sid
the su
eq
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as obtained by having the same amounts of energy in all
hree axes.

Summarizing, for each of the four surrounds (back-
rounds) we generate 13 different centers (foregrounds)
y 13 transformations of the surround statistics. One of
hese centers is predicted from the computational sa-
iency measure as the most salient. The question is
hether human observers also find this center to be the
ost salient. If so, this means that information theory is a

alid underlying mechanism for bottom-up saliency.

. Procedure
fter passing the color vision test, the subjects were
eated at a 50 cm viewing distance from the LCD monitor.
n each trial, they indicated (by pressing keys on the key-
oard) which of the two centers (left or right) stood out
ost from the surround, i.e., had the highest salience.
hey were encouraged to make a decision although they
ould also indicate that the two centers were equally sa-
ient.

. Experimental Results
n each trial, a subject indicated which of the two centers
as most salient. Each center was in competition with the
2 others just once. From these trials we compute the

Table 1. Surrounds with Systematic Changes in
the Standard Deviations „�… Along the L*, a*, and

b* Axes of Perceptual Color Spacea

Surround �L �a �b

SL �LCorel
�aCorel

�bCorel
Sa �aCorel

�LCorel
�bCorel

Sb �bCorel
�aCorel

�LCorel
Seq �Leq

�aeq
�beq

aThe statistics of the first surround �SL� comply with the energy distributions of
atural images contained in the COREL image data set. The last surround �Seq� has
qual amounts of energy in the three directions ��Leq

=�aeq
=�beq

�.

ig. 4. (Color online) Relative saliency (in descending order) of
ervers. Error bars represent the standard error of the mean. Th
alient (bottom) centers, in a small portion of the surround.
elative saliency of each center from the number of times
he center was selected as the most salient. In Fig. 4, the
elative saliency is shown obtained for all surrounds, in
escending order of saliency. Error bars indicate the stan-
ard error of the mean, obtained by averaging over the
ight observers. The data did not indicate one or more of
he observers to be an outlier.

Regarding surround SL, Fig. 4 shows that center Cab
as the highest relative saliency. This is the expected re-
ult because SL has the largest variance in the L* dimen-
ion and Cab has a color edge distribution amplified along
oth the a* and b* dimensions, at the cost of reducing en-
rgy in the intensity edge �L*� distribution. Thus, center
ab looks more strongly colored but with less luminance

ontrast, which is highly salient in the SL surround. In
ontrast, the least salient center �CL� has increased the
nergy in the intensity edges, at the cost of reducing en-
rgy in the color edges. However, since the surround SL
lready has a distribution that dominates in the intensity
dges, the extra amplification in intensity edges does not
esult in visual saliency, as predicted for our saliency
easure.
Surround Sa was created by rotating the axes of edge

istributions such that the largest variance coincided
ith the a* axis of CIELAB space. This results in an in-

reased edge distribution along the red–green axis of color
pace, i.e., the colors along the red–green axis become
ore saturated, at the cost of a decreased edge intensity.
igure 4 shows that for this background the most salient
enter is Cb and the least salient center is C6. Note that
here is no significant difference between the saliency of
4 and C6. Center Cb is most salient because it is ampli-
ed along the b* axis (the blue–yellow axis in color space),
hich is orthogonal to the amplified a* axis of the sur-

ound, at the cost of reduced energy in the b* and L* axes.
lue–yellow edges with decreased intensity edges are sa-

ient in a dominant red–green edge distribution. Center
6 and C4 are least salient in surround Sa because their

centers for the surrounds SL, Sa, Sb, and Seq averaged over ob-
ges on the right-hand side show the most salient (top) and least
the 13
e ima
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-coefficient in the saliency transformation equals �0,
hich is the largest ��0��0��0�. Thus, intensity edges
re amplified most but do not show up as salient in the
ominating red–green surround.
The results for surround Sb are described in a similar

ay as for Sa, but with the role of the red–green and
ellow–blue axes interchanged. Thus, in short, Ca is most
alient because it has amplified red–green edges (at the
ost of blue–yellow and intensity), which stands out from
he dominating blue–yellow surround.

The surround Seq is characterized by equal edge distri-
utions along the L*, a*, and b* axes of CIELAB color
pace. Center Ca apparently is most salient, followed by
ab and Cb, which are all chromatic transformations. The

east salient centers are all intensity amplifications. This
s an important result: when the edge distributions in the
hree axes of color space are equal, the most salient
hange to that distribution is a chromatic one, i.e., an in-
rease of edges along the a* or b* axis, or both, at the cost
f a decrease of energy in intensity edges.

With respect to the natural surround SL (the surround
aving the statistics of the COREL data set) there re-
ains one important question. Why was center C1 not the
ost salient one? We recall that C1 was expected to be
ost salient from a computational point of view. Figure 4

hows that C1 and C2 are not significantly different and
ave a higher relative saliency than C3 and C4 and C5
nd C6. Thus, C1 has indeed the highest saliency with re-
pect to the group of centers C1 to C6, as predicted by in-
ormation theory. Nevertheless, C1 is still outperformed
y the chromatic transformations Cab, Ca, and Cb. The
eason for this is that the latter transformations have
aximized energy in one or two axes with a total amount

f energy that exceeded the total energy of the transfor-
ation of C1. Therefore, the chromatic transformations
ab, Ca, and Cb are more salient than C1. In conclusion,

or the center distributions C1 to C6 having the same total
nergy (information content) in the edge distributions, in-
ormation theory correctly predicts C1 to have a high rela-
ive saliency in the natural surround SL.

. Comparison Between Computational Saliency Models
nd Psychophysics
ere we compare the performance of the different compu-

ational saliency models detailed in Section 2, namely,
lobal opponent color-space saliency �Mo

c� and local com-
utational �Mo

l �. Additionally we compare these methods

ig. 5. (Color online) Correspondence as computed with Eq. (10)
etween computational saliency models. The different computa-
ional models are sorted on descending correspondence. Error
ars indicate standard error of the mean (eight subjects).
gainst the Itti model [16] and RGB edges on predicting
he human response (the selection of the most salient cen-
er) in our psychophysical experiment. We apply a trans-
ormation to the matrices obtained in Section 2 to convert
hem to L*a*b* space. For each subject �s=1. . .8� and each
omputational model �m=1. . .5�, we computed the overall
orrespondence between the subject’s selection and the
odel’s selection of the most salient center. This corre-

pondence Cor�s ,m� is a value between 0 and 100 and is
omputed as follows:

Cor�s,m� = 100
�
i=1

468

ai

468
, �10�

here ai denotes—per trial i—the agreement (either 0 or
) between model and subject. Figure 5 shows the corre-
pondence for the four computational models. Trials in
hich subjects could not decide on the most salient center
re left out of the computation.
It is clear from Fig. 5 that global opponent-space sa-

iency (Mo
c with 74.75% correspondence) outperforms the

ther models (Ml
c and Itti having 62.56% and 57.70% cor-

espondence, respectively). At the 95% confidence level
ignificant differences exist between global �Mo

c� and local
omputational saliency �Ml

c� �p=1.1E-4�, between �Ml
c�

nd Itti �p=1.2E-3� and Itti and RGB �p=1.8E-15�. We
lso computed the interobserver agreement using Eq. (10)
ut with ai replaced by wi, where wi represents the frac-
ion (between 0 and 1) of subjects that gave the same re-
ponse in each trial i. Thus, if 6 of the 8 subjects selected
he same center, wi=6/8. This resulted in an observer
greement of 86.8%. In conclusion, our computational sa-
iency methods (both local and global) are significantly
etter at predicting human saliency than the Itti and
och model, as shown in Fig. 5.

. EVALUATION ON HIGH-LEVEL
ALIENCY

n this section, we validate computational saliency for the
ask of salient object detection in real-world images and
ompare it with existing methods. We call this task high-
evel saliency to distinguish it from saliency detection that
s purely bottom-up. Bottom-up saliency was investigated
n the previous section, where patterns were used that do
ot show any familiar object or shape avoiding possible ef-
ects of cognitive top-down mechanisms. In high-level sa-
iency tasks, top-down information such as image seman-
ics, is also considered.

. High-Level Saliency Data Set
o compare our computational saliency methods with
igh-level saliency, we use a large-scale image data set of
uman labeled salient objects [21]. Example images of
his data set are shown in Fig. 6.

The data set contains a large number of high-quality
mages obtained from different sources such as image fo-
ums and image search engines. Images all contain a
ingle salient object or a distinctive foreground object. For
ach image, users drew a rectangle enclosing the most sa-
ient object in the image. We use the set B consisting of
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000 images that were labeled by 9 users[21]. Foreground
ixels are those pixels that are considered to be fore-
round by a majority of the users. Then, this set is divided
nto 10 subsets of 500 images each �B1 , . . . ,B10�. We use
he 500 images in B1 for training and the rest of the 4500
mages for testing.

. Assessing Computational Saliency Transformations
n Subsection 2.A, we proposed different computational
aliency measures based on information theory. Here, we
ant to verify to what extent the transformation given by

nformation theory corresponds to the optimal linear
ransformation possible on a given data set. To this end,
e compute the optimal transformation, called Mo

h, on the
abeled data set.

To determine the success of each transformation, the
recision index [21] is used, which is computed as follows.
n image is divided into a foreground region fi and a
ackground bi, where i is the image index. Let fM

i be the
ummed saliency of the foreground for a certain saliency
ransformation M. Let bM

i denote the same for the back-
round. Further, let A�fi� and A�bi� denote the area of the
oreground and background, respectively. The confidence
easure used is the precision index P


i :

PM
i =

A�bi�fM
i

A�fi�bM
i . �11�

n other words, PM
i provides the likelihood to select from

he image a location that is within the salient bounding
ox [21]. A higher precision index therefore corresponds to
better saliency measure.
To reduce the set of possible transformations, we re-

trict the transformation to the opponent color space
ransformation. We define Mo

h, called learned saliency, as
he transformation that maximizes PM

i by varying the pa-
ameters 
=diag�� ,� ,��. An exhaustive search based on
ll training set images is performed. Hence, Mo

h is the
ransformation that obtains the maximum correspon-
ence (given the opponent transformation) to the human
ssessments of object saliency.
A high correlation is expected between Mo

h and the glo-
al opponent color-space saliency transformation Mc.

ig. 6. (Color online) Labeled images from image set B consist-
ng of 5000 images that were labeled by 9 users obtained from
21].
o

able 2 summarizes the results of the computational sa-
iency and the learned saliency measures in terms of the
recision index.
When comparing the learned saliency measure with

he computational saliency measure, it can be inferred
hat the results obtained by the computational approach
re indeed in agreement with the best possible transfor-
ation, that is, the learned saliency measure. In both

ases, � is a fairly small value. This is because there is a
igh amount of achromatic transitions in the images as
pposed to chromatic ones. Hence, these transitions are
ess informative, as predicted by the computational sa-
iency measure. To obtain a proper saliency map, the
eights of these transitions should be decreased. Further-
ore, � and � values are larger and close to each other in

oth cases. It is also interesting to note that local saliency
utperforms global saliency. This is because local saliency
an adapt its transformation for each individual image.

To quantitatively show the resemblance of the saliency
aps computed by the computational and learned sa-

iency, we have calculated the intersection of the normal-
zed saliency maps. The intersection is computed by tak-
ng the inner product between two saliency maps (the
aliency maps are first transformed to vectors). The aver-
ged score over all images reaches 97.43%. For compari-
on, the overlapping between learned saliency and sa-
iency based on RGB edges (without additional trans-
ormation) is only 83.11%. A qualitative comparison be-
ween computational and learned saliency is depicted in
ig. 7.
In conclusion, the relevance of using information

heory as a saliency processing model from a computa-
ional point of view has been demonstrated.

. Evaluation of Computational Saliency Methods on
igh-Level Saliency
ere, we evaluate the different computational saliency
odels proposed in this paper and compare them with the

tti and Koch saliency method [16]. The evaluation is per-
ormed on the real-world image data set [21]. To evaluate
aliency methods, we use the hit and miss index (a com-
arison measure commonly used in the literature): if the
aximum of the saliency map falls inside the original

ectangle, we have a hit, otherwise, a miss is registered.
ote that for each image the size of the foreground (rect-
ngle) is given.
We evaluate the learned saliency �Mo

h�, computational
lobal saliency �Mo

c�, and computational local saliency
Ml

c�. In addition to these transformations, we also show
esults obtained with the multiscale computational local
ransformation �Ml

�c�, the RGB edges without any trans-

Table 2. Results Obtained for Learned Global
Saliency Measure Mo

h, Computational Global Sa-
liency Mo

c, and Computational Local Saliency Ml
ca

Measure � � � PM
i

Mo
h 0.65 0.34 0.01 0.49

Mo
c 0.53 0.43 0.04 0.45

Ml
c Image dep. Image dep. Image dep. 0.51

aThe fourth column shows the average precision score.
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ormation (RGBe), the Itti saliency method (Itti), and a
andom selection of the most salient location (Random).
able 3 summarizes the results obtained.
From this table, it can be concluded that the results ob-

ained with multiscale contrast are better than others.
ompared with the local saliency model, the hit index in-
reases from 89.6 to 95.2. Furthermore, using locally in-
uced saliency provides better performance than comput-

ig. 7. (Color online) Color saliency example. First row: origina
iency Mo

c (see Table 2). Fourth row: Mo
h (see Table 2). The over

7.43%, whereas the overlapping with the RGB edges is 83.11%.

Table 3. Hit and Miss Values Obtained in the Test
Set for All Proposed Saliency Transformations as
Well as for RGB Edges, Itti Saliency Measure [16],

and a Random Selection of the Most Salient
Location

Transformation Hit Miss

Global learned �Mo
h� 87.1 12.9

Global computational �Mo
c� 87.9 12.1

Local computational �Ml
c� 89.6 10.4

Local multiscale computational �Ml
�c� 95.2 4.8

RGB edges 81.4 18.6
Itti 88.2 11.8

Random 72.8 27.2
ng the color transformation based on color edges
xtracted from the whole image data set. As expected, lo-
ally computing the transformation adapts better to the
dge distribution for each image. Furthermore, the re-
ults show that locally induced saliency with multiscale
ontrast provides the best performance.

. CONCLUSIONS
n this paper, different computational methods are pro-
osed to compute color edge saliency based on the infor-
ation content of color edges. A comparison has been

one between these computational models and human
erception. First, a psychophysical experiment has been
onducted using patterns without semantic image cues
bottom-up saliency task). Second, a computational ex-
eriment has been done focusing on the task of salient ob-
ect detection including object and scene semantics (high-
evel saliency).

From the psychophysical experiment, the relevance of
sing information theory as a saliency processing model
rom a human-perception point of view has been demon-
trated. It can be derived that for a uniformly distributed
ackground, humans are more sensitive to chromatic

e. Second row: RGB edges. Third row: computational global sa-
ween learned and computational maps over all images reaches
l imag
lap bet
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hanges than luminance variations. Furthermore, it is
hown that the proposed method performs significantly
etter at predicting saliency (with a human-method cor-
espondence of 74.75% and an observer agreement of
6.8%) than state-of-the-art models.
From the computational experiment, it has been shown

hat the use of information theory as a saliency process-
ng model is also valid from a computational point of view.
he results obtained from a large-scale data set confirm
hat an early fusion of these features yields an improve-
ent on the prediction of saliency. Furthermore, it is

hown that the proposed computational methods provide
ccurate performance to compute visual saliency with a
it rate up to 95.2%.
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