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Do cortical neurons process luminance or contrast to encode surface
properties? J Neurophysiol 95: 2638–2649, 2006. First published
December 28, 2005; doi:10.1152/jn.01016.2005. On the one hand,
contrast signals provide information about surface properties, such as
reflectance, and patchy illumination conditions, such as shadows. On
the other hand, processing of luminance signals may provide infor-
mation about global light levels, such as the difference between sunny
and cloudy days. We devised models of contrast and luminance
processing, using principles of logarithmic signal coding and half-
wave rectification. We fit each model to individual response profiles
obtained from 67 surface-responsive macaque V1 neurons in a center-
surround paradigm similar to those used in human psychophysical
studies. The most general forms of the luminance and contrast models
explained, on average, 73 and 87% of the response variance over the
sample population, respectively. We used a statistical technique,
known as Akaike’s information criterion, to quantify goodness of fit
relative to number of model parameters, giving the relative probability
of each model being correct. Luminance models, having fewer pa-
rameters than contrast models, performed substantially better in the
vast majority of neurons, whereas contrast models performed simi-
larly well in only a small minority of neurons. These results suggest
that the processing of local and mean scene luminance predominates
over contrast integration in surface-responsive neurons of the primary
visual cortex. The sluggish dynamics of luminance-related cortical
activity may provide a neural basis for the recent psychophysical
demonstration that luminance information dominates brightness per-
ception at low temporal frequencies.

I N T R O D U C T I O N

How does the brain transform light signals registered on the
retina into visual surface representations? Classical psycho-
physical studies of brightness and color constancy imply that
surface representations are formed through the long-range
spatial integration of visual information (Land 1959, 1977,
1983, 1986). One version of the well-known retinex model
(Land and McCann 1971), for example, posits that the brain
spatially integrates the contrasts, or log luminance ratios,
formed at reflectance borders, to discount global illumination
conditions. Related computational approaches advocate the
filling-in of contrast information within the regions defined by
object boundaries (Cohen and Grossberg 1984; Gerrits and
Vendrik 1970; Grossberg and Todorovic 1988), a process that

is generally assumed to occur in the visual cortex (Grossberg
and Mingolla 1985; Komatsu et al. 2000, 2002; Pessoa et al.
1998). Recent psychophysical studies, however, have shown
that the tendency toward brightness constancy can be relatively
weak (Masin 2003), even in complex displays (Arend and
Spehar 1993a,b; Robilotto and Zaidi 2004). Furthermore, clas-
sical experiments with Ganzfeld stimuli indicate that human
observers can act like photometers in the absence of contrast
information (Barlow and Verrillo 1976). These psychophysical
findings are consistent with the informal observation that
humans are easily able to perceive global illumination changes,
such as when a cloud passes overhead. It is important to note,
however, that the scaling of local luminance to mean scene
luminance has been proposed as a mechanism to underlie the
tendency toward brightness constancy (Helson and Himelstein
1955; Robilotto and Zaidi 2004). In summary, understanding
the roles of contrast and luminance processing may shed light
on the nature of the cortical computations underlying surface
perception.

How do the concepts of contrast and luminance processing
compare with neurophysiological data? The center-surround
properties of receptive fields (RFs) in the mammalian retina
and lateral geniculate nucleus (LGN) are generally taken as
evidence that early visual processes transmit contrast informa-
tion, rather than luminance information, to visual cortex. In-
deed, the preponderance of contrast-responsive neurons in
retina and LGN forms the basis for some general computa-
tional approaches to vision (Grossberg and Mingolla 1985).
Evidence from the cat (e.g., Barlow and Levick 1969; Mante et
al. 2005; Rossi and Paradiso 1999), however, shows that many
retinal and LGN neurons encode luminance information, in
addition to contrast information. In monkey primary visual
cortex (V1), there is strong evidence that some neurons encode
the luminance of Ganzfeld stimuli (Kayama et al. 1979;
Maguire and Baizer 1982). Thus contrary to the textbook view,
the neural building blocks for the processing of luminance
information are clearly available in visual cortex of monkey
and cat.

In visual cortex, the responses of a small proportion of
neurons qualitatively mirror aspects of human brightness con-
stancy (MacEvoy and Paradiso 2001), simultaneous brightness
contrast (Kinoshita and Komatsu 2001; Rossi and Paradiso
1999; Rossi et al. 1996) and brightness filling-in (Hung et al.
2001; Komatsu et al. 2000; Roe et al. 2005). Some authorsAddress for reprint requests and other correspondence: T. Vladusich, Lab-
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have found that few neurons in cat striate cortex (Hung et al.
2001; MacEvoy and Paradiso 2001) and monkey V1 (Friedman
et al. 2003) respond vigorously to changes in surface lumi-
nance that are unaccompanied by concurrent stimulation of the
classical RF with contrast stimuli. The apparent sparsity of
neurons sensitive to the properties of uniform surfaces has even
led some authors to conclude that surface brightness and color
are exclusively encoded by border-responsive neurons (Fried-
man et al. 2003; Zhou et al. 2000; see also Blakeslee and
McCourt 1999). Kinoshita and Komatsu (2001) recently de-
scribed surface-responsive neurons that integrate information
over large regions of the visual field and respond vigorously to
uniform surfaces in the absence of local-contrast changes, and
in some cases even local-luminance changes, in the classical
RF (see also Peng and Van Essen 2005; Roe et al. 2005).

Here we develop a detailed computational-statistical frame-
work to quantitatively assess whether cortical neurons process
luminance or contrast information. We demonstrate the utility
of the framework by analyzing the data described in the
Kinoshita and Komatsu (2001) study. Our approach combines
elements familiar in the areas of computational vision model-
ing and model selection. First, we assume logarithmic process-
ing of luminance and contrast signals (Barlow and Verrillo
1976; Land and McCann 1971). To a first approximation,
logarithmic processing captures the highly nonlinear signal
processing that occurs in the early visual pathway. Second, we
implement half-wave rectified (HWR) processing on the inputs
and outputs of modeled neurons, which captures the notion that
neurons cannot generate negative spike rates (Grossberg and
Mingolla 1985; Heeger 1993). Third, we apply a statistical
technique (Burnham and Anderson 2002), known as Akaike’s
information criterion (AIC), to examine multiple versions of
the contrast and luminance models. The AIC method trades off
the number of free-model parameters against fit quality,
thereby introducing the concept of parsimony into model
analysis. The AIC approach also overcomes some known
limitations to conventional statistical methods for analyzing
model performance, allowing batch analysis of both nested and
nonnested models (e.g., contrast vs. luminance) without the
need to specify null hypotheses or make corrections for mul-
tiple comparisons.

M E T H O D S

Kinoshita–Komatsu paradigm and classification scheme

Simulations were carried out on cells classified in the original
publication of Kinoshita and Komatsu (2001). We first briefly de-
scribe the methods of this study. For details we refer to the original
publication. Neuronal responses were recorded in two separate con-
ditions. In one condition, the luminance of a central square, embedded
in a background of constant luminance, was varied in seven equal log
steps ranging from 0.1 cd/m2 (candelas per square meter) to 100
cd/m2. The size of the center stimulus was always much larger than
the hand-mapped classical RF (which was itself often tuned to
oriented stimuli). In a second condition, the luminance of an annulus
surrounding the central stimulus was varied through the same range as
that used for the center-change tests. In this case, both the central
square and the background surface had constant luminance. Impor-
tantly, the luminances of the square and the background were tailored
to optimally excite a given neuron. As such, the square and back-
ground luminances were generally different, meaning that for most
neurons there was always a border present in the image. We note here

the similarity between the stimuli used in the Kinoshita–Komatsu
study and those typically used in studies of human brightness percep-
tion (Arend and Spehar 1993a,b; Bindman and Chubb 2004a,b; Hong
and Shevell 2004a,b; Reid and Shapley 1988; Rudd and Arrington
2001; Rudd and Zemach 2004; Shapley and Reid 1985; see also
Boucard et al. 2005; Huang et al. 2002).

The raw data for each neuron were provided to us by the authors.
The sample consisted of 67 single- and multiunit recordings (hereafter
referred to as “neurons”) classified into six groups, according to their
response profiles. The original data set included 76 neurons, but nine
were excluded because they were not subjected to the same experi-
mental conditions as the other neurons. One class of neurons (Bright
Type 1) responded to increasing surface luminance with monotonic
increases in firing rates, but were unaffected by changes in the
luminance of the annulus surrounding the central surface. A second
class of neurons (Bright Type 2) responded to changes in the lumi-
nance of the central square and of the annulus in a manner consistent
with human brightness contrast. That is, these neurons increased their
firing rates in response to increasing central-surface luminance but
decreased their firing rates in response to increasing annulus lumi-
nance (in which case humans would perceive a darkening of the
central surface). The third class (Bright Type 3) responded to in-
creases in both central-surface and annulus luminances with increased
firing rates. Kinoshita and Komatsu also described Dark-type neurons,
with complementary response profiles to those of the Bright-type
neurons.

The number of cells for each classification were: Bright Type 1
cells (n � 13), Bright Type 2 cells (n � 14), Bright Type 3 cells (n �
22), Dark Type 1 cells (n � 5), Dark Type 2 cells (n � 11), and Dark
Type 3 cells (n � 2). These RF classifications were based on the
slopes of the response functions, observed during the later part of the
response phase. For most neurons, the recording phase was between
520 and 1, 020 ms after stimulus onset (see DISCUSSION).

Half-wave rectified contrast model

We first specify the most general form of the contrast model and
then derive two simpler forms that we also test. The contrast model is
an adapted version of the retinex model (Land and McCann 1971).
The model computes edge signals as weighted log luminance ratios. It
was previously used to fit psychophysical brightness data (Rudd and
Arrington 2001; Rudd and Zemach 2004) on the effects of variable
annulus luminance and width in displays similar to those used in the
annulus-change condition of the Kinoshita–Komatsu study. To adapt
the Rudd et al. version of the contrast model to the current context, we
implemented half-wave rectification of the input signals, such that
there were four inputs (Fig. 1). Two inputs represented polarity-
specific signals from the inner border, whereas the other two repre-
sented polarity-specific signals from the outer border (Fig. 1A). Each
input was weighted by coefficients (wj) that were fit by the method
described below. The neural spike rate (x) was derived by adding the
contributions of the four input kernels with a fifth free parameter (C)
that set the baseline activation around which the inputs modulated

x � ��w1�log �Lc

Lr1
���

� w2�log �Lr1

Lc
���

� w3�log �Lr1

Lr2
���

� w4�log �Lr2

Lr1
���

� C���

(1)

where Lc is the center luminance, Lr1 is the luminance of the spatial
region immediately surrounding the center (the region corresponding
to the annulus in the annulus-change condition), and Lr2 is the
luminance of the region immediately surrounding region r1 (the
region corresponding to the background in the annulus-change con-
dition). In the center-change condition, Lr1 � Lr2, and only the first
two terms in Eq. 1 are relevant because log (Lr1/Lr2) � log (Lr2/Lr1) �
0. In the annulus-change condition, Lr1 does not equal Lr2 and so only
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the edge pathways weighted by w3 and w4 are active. The positively
signed brackets [ ]� denote half-wave rectification, meaning that spike
rate could be either positive or zero, but not negative. Depending on
the values of the fitted weights (wj), the response function f (x),
associated with Eq. 1, can be either monotonic or nonmonotonic
[where f (x) represents the vector of neural responses to all stimuli in
the set]. For example, all else being equal, positive values for w1 and
w2 give rise to a V-shaped function with respect to variable Lc, as
Kinoshita and Komatsu (2001) observed in some surface-responsive
neurons especially during the early phases of the response (�120 ms).

We built two simplified versions of the contrast model. In one
simplification, we constrained the parameters multiplying each edge
polarity to equal one another. We did this separately for inner and
outer edges (w1 � �w2, w3 � �w4), thereby deriving the contrast
model without half-wave rectification. This constraint prevented the
model from generating different slopes for opposite-edge polarities
but it also reduced the number of free parameters to three, the same
number as the mean-luminance model described below. In a second
simplification, we constrained the contrast model such that only the

inner edge provided the inputs (w3 � w4 � 0), also giving a
three-parameter model.

Half-wave–rectified luminance models

We built three versions of the luminance model. The most general
form was the mean-luminance model (Fig. 1B) with input half-wave
rectification. The other two models were derived through simplifica-
tions of this model. The mean-luminance model is based on the idea
that local luminance signals are scaled by an estimate of mean
luminance (e.g., Robilotto and Zaidi 2004). We modeled this theoret-
ical idea in terms of the logarithmic ratio of the local luminance and
the mean luminance, weighting each of the inputs separately by means
of a power exponent. We added the input kernels, together with a third
free parameter (C), to give

x � �� log � Lc
w1

Lmean
w2 ���

� C��

(2)

where Lc and Lmean correspond to the luminance of the center stimulus
and the mean luminance

Lmean �
Lcarea�c� � Lr1area�r1� � Lr2area�r2�

area�total�
(3)

The mathematical operations embodied in Eq. 2 are equivalent to
additive interactions between the logarithms of the center- and mean-
luminance values, multiplied by the values of their respective weights,
w1 log (Lc) � w2 log (Lmean). Equation 2 is quite flexible in the
interactions it can entertain. The sign of the relationship between
center- and mean-luminance values, for example, can be inverted
log (Lmean

w2 /Lc
w1), with respect to Eq. 2, if both weights are fitted as

negative values. Indeed, the relationship can also be multiplicative, as
in log (Lc

w1Lmean
w2 ) when w1 and w2 are positive and negative, respec-

tively, or as in log (1/Lc
w1Lmean

w2 ), when w1 is negative and w2 is
positive.

We constructed two local-luminance models, in which only the
luminance of the center patch was processed, by constraining the
weight for the mean-luminance term to equal zero (w2 � 0). The
local-luminance models therefore had only two free parameters, and
the only difference between the two versions was that we omitted the
inner HWR brackets in one model and kept the brackets in the other.
We expect that the local-luminance models would outperform the
mean-luminance model in the case of Type 1 neurons, but not Type 2
and 3 neurons because the classification as Type 1 implies that these
neurons encode only local luminance.

Fitting

We fit the models to data from each neuron individually by means
of a nonlinear least-squares optimization procedure. Fitting was done
on the median values, calculated over all trials, in each of the 14
stimulus conditions. We did not fit to individual trials (or means) for
the following reasons: 1) the data for some stimulus conditions were
highly skewed, thereby rendering the assumption (that underlies
regression) of independent, Gaussian-distributed residuals implausi-
ble; and 2) the variance associated with each condition varied con-
siderably within a neuron, violating the assumption of uniformity of
variance across conditions. Although it may be possible to deal with
nonuniformity of variance (by weighting each condition, assuming the
variance-stimulus relationship is predictable), our choice of regression
to the medians was seen as the more conservative option. This choice
is perhaps justified by the zero-mean Gaussian-distributed residuals
we obtained for the vast majority of neurons.

All models usually converged well, often generating high values for
the variance explained, R2, defined as

FIG. 1. Schematic illustration of the models. A: contrast model: the log
luminance ratios computed at image borders are rectified and summed by the
surface-responsive neuron. Edges of opposite polarity and the same spatial
position are weighted separately. B: mean-luminance model: the logarithm of
the local luminance is computed relative to the logarithm of the mean scene
luminance, by subtraction of the weighted log mean signal from the weighted
log local signal. Because the luminance values are transformed in log space,
this is equivalent to computing ratios of the local and mean luminance values
to the power of their respective weights (see METHODS). General contrast model
has 5 free parameters, whereas the mean-luminance model has only 3 param-
eters. Examples of the stimuli used in the Kinoshita–Komatsu study are shown
below the contrast model.
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R2 � 100�1 �
SSfit

SStotal
� (4)

where SSfit is the sum of squares derived from the fit and SStotal is the
sum of squares derived from a flat line given by the mean of the fitted
residuals. In instances where R2 � 40%, we attempted to obtain better
fits by randomly toggling the starting parameter values. We found
that, in a few cases where R2 � 0%, changing the starting parameter
led to an excellent fit. However, these cases were rare. We always
took pains to obtain convergence solutions that represented global,
rather than local, minima.

Performance analysis using Akaike’s information criterion

We analyzed the performance of each model, that is, the goodness
of fit relative to the number of parameters, using Akaike’s information
criterion (AIC) with sample-size correction (AICc). Although the AIC
approach is certainly not new (Burnham and Anderson 2002), only in
relatively recent times has the method begun to be applied in certain
scientific contexts, such as neuroscience (Averbeck and Lee 2003;
Elder and Sachs 2004; Schall et al. 2004) and phylogenetics (Posada
and Buckley 2004). The core idea of the approach is to estimate the
“loss of information” that occurs when one attempts to construct a
model of reality. The measure of information loss consists of a
mathematical term estimating the goodness of fit to a data set (e.g.,
sum of squares) and a term estimating the effect of the number of
estimated parameters (i.e., complexity). In this sense, AIC embodies
a statistical principle of parsimony. Formally, we have

AICc � N ln�SSfit

N
�� 2K �

2K�K � 1�

N � K � 1
(5)

where N is the number of data points, SSfit is the fitted sum of squares,
and K is the number of fitted model parameters. Generally speaking,
the smaller the value of AICc the better the model has performed. By
comparing AICc values for the ith model to a comparison model (C),
as in

�AICc
i � AICc

i � AICc
C (6)

and computing the ratio of these differences relative to the sum of all
the models (r) in the set (R � number of models), one obtains the
relative probabilities of each model being correct, also known as
Akaike’s weights

pi �
e�0.5��AICc

i �

�r�1
R e�0.5��AICc

i �
(7)

For comparison, we also compute a second criterion, known as the
Bayesian information criterion (BIC)

BIC � N ln�SSfit

N
�� K� ln �N� (8)

where � � 2.5 represents a factor correcting for small sample size
(Ball 2001). An analogous computation underlies the calculation of
relative probabilities associated with the BIC method. A detailed
discussion and comparison of the AIC and BIC approaches are
provided in Burnham and Anderson (2002).

The general AIC approach has several advantages over tests con-
ventionally used to compare models with different numbers of param-
eters (Burnham and Anderson 2002). Of particular interest here, the
AIC method is valid even when models are not “nested”—that is,
when they cannot be derived directly from one another, as is the case
with the contrast and luminance models examined here. Additionally,
the AIC approach does not depend on arbitrary critical (�) values for
accepting or rejecting hypotheses and does not require adjustments for
multiple comparisons of the sort familiar in conventional statistical
inference (e.g., Bonferroni correction). [General discussions of the

problems associated with conventional methods of statistical infer-
ence can be found elsewhere (Goodman 1999a,b; Sterne and Smith
2001)]. The AIC approach also allows one to compute evidence ratios
with selected models (ratios of relative probabilities of each model
being correct) or to add together the relative probabilities associated
with specific models to examine the importance of parameters com-
mon to the selected models. We make particular use of the additive
property in our analysis to compare the joint relative probabilities
associated with the local- and mean-luminance models.

In common with conventional methods, the AIC approach depends
on the assumption that model residuals are Gaussian-distributed with
zero mean. We tested this assumption for all model fits using the
D’Agostino–Pearson test for skewness and kurtosis, and the Student’s
t-test for differences of the mean residuals from zero, respectively. In
only a few isolated cases did the P values associated with either test
fall to �0.05. These instances are discussed in the text, without being
dismissed outright (because P values of �0.05 hold no privileged
status).

Simulation methods

All simulations were performed on an Apple Mac G5 dual 2.0Gh
machine using software implemented in Matlab (version 7.0.4, The
MathWorks). For the mean-luminance model, we assumed that the
stimulus was a 129 	 129 lattice of luminances [in candelas per
square meter (cd/m2)], with a central square of 41 	 41 pixels and an
annulus of 101 	 101 pixels on which the square was superimposed
(the contrast model, being agnostic to stimulus area, did not require
this assumption). The dimensions of these stimuli conformed to the
average stimulus dimensions used in the Kinoshita–Komatsu study.

R E S U L T S

Examples of model fits

We now analyze the data of Kinoshita and Komatsu (2001)
using the modeling framework detailed above. In this section,
we limit ourselves to showing example fits obtained with the
most general forms of the contrast and luminance models
because these provided the best fits. Figure 2A shows the
responses of a neuron classified as Bright Type 3, along with
the best-fitting function, f (x), with 95% confidence intervals
(CIs), of the contrast model. This corresponds to the conditions
in which the central patch changed luminance but the back-
ground luminance (dashed vertical line) remained constant
(center-change condition). The error bars for each data point
represent the first and third quartiles associated with the me-
dian for that point. The fitted spike rates are a bit below the
data points when the square is darker than the background
(dashed horizontal line represents isoluminance), meaning that
the model predicts slightly less ongoing activity than observed.
For both model and data, the spike rate increases linearly (in
log space) as the square’s luminance increases above the
background luminance. The difference in slopes of the two
components of the model response function arises from differ-
ent weightings of the opposite contrast polarities. That is, the
weight associated with the decremental inner edge (square
darker than the background) is small (w2 � 1.32 
 5.7, the
latter value being the 95% confidence interval on the parameter
estimate), whereas the weight associated with the inner incre-
mental edge is large (w1 � 24.26 
 4.01; square brighter than
the background).

The scenario is more complicated (Fig. 2B) when the lumi-
nance of the square is kept constant (dotted vertical line) and
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the luminance of the surrounding annulus changes (annulus-
change condition). In this condition, the annulus is itself
surrounded by a background surface of constant luminance
(dashed vertical line), meaning that there is an inner and an
outer border in the image. At the lowest annulus luminance
values, the inner incremental weight is active because the
annulus is much darker than the center. At the same time, the
weight associated with the outer decremental edge is large and
negative (w4 � �38.23 
 4.23), which, combined with the
large contrast ratio between annulus and the background,
generates strong suppression. As this contrast decreases, the
suppression declines and there is a steep increase in spike rate
up until the point where the annulus and background are
isoluminant. When the annulus becomes brighter than the
background, there is a sudden dip in the model response
function. This occurs because the contrasts associated with the
inner and outer borders are both very small. Thus even though
the inner and outer incremental weights (w3 � 16.05 
 3.64)
are positive, the small contrast ratios lead to a dip. As the
annulus luminance increases above the center luminance, the
inner edge becomes a weakly weighted decrement, which,
when combined with the strongly weighted outer incremental
edge, results in a secondary peak in the response function at the
highest annulus luminance.

As expected of a model with more degrees of freedom, the
fit for the contrast model (R2 � 93.72) was better than that for
the mean-luminance model (R2 � 65.13). As we demonstrate
in the following section, this fit is sufficiently better to justify
the two extra parameters in the contrast model. In other words,
the data strongly support the contrast model over the mean-
luminance model. The fit associated with the mean-luminance
model is shown in Fig. 2, C and D. The shape of the response
function in the center-change condition arises as follows. Both
the weighted center luminance (w1 � 7.98 
 6.51) and
weighted mean luminance (w2 � 12.08 
 9.80) are small at the
lowest center-luminance values. Because both weights are
positive, the interaction between the two input signals is
multiplicative, resulting in an increase in spike rate with center
luminance. In the annulus-change condition, the center lumi-
nance remains constant, meaning that only the weighted mean-
luminance signal varies. Because only one input source in-
creases, the response function increases more slowly than that
in the center-change condition.

A second example, a Dark Type 2 neuron, is shown in Fig.
3. The fit associated with the contrast model is only slightly
better (R2 � 93.91) than that associated with the mean-
luminance model (R2 � 92.47). In this instance, our perfor-
mance analysis (see following text) indicates that the mean-
luminance is more likely to be correct because it achieves a
comparably good fit with fewer parameters. In the present
example, the fitted response functions are decreasing in the
center-change condition and increasing in the annulus-change
condition. The explanations of the functions are similar to
those given above. With respect to the contrast model, the main
difference is that the outer edge in the annulus-change condi-
tion has only a relatively weak effect. In the case of the

FIG. 3. Example of fits generated for a Dark Type 2 neuron. A and B:
representation of the contrast-model fit. C and D: representation of the fit for
the mean-luminance model. Again fit is better for the contrast model but the
mean-luminance model actually performs better because it has fewer param-
eters. See RESULTS for details.

FIG. 2. One example of fits generated by contrast and mean-luminance
models for a Type 3 Bright neuron. A: fits (thick gray line) and 95% confidence
intervals (thin gray lines) of contrast model in the center-change condition.
Each data point represents the neuron’s median firing rate over trials, with 1st
and 3rd quartiles indicated by error bars. Vertical dashed line represents the
(constant) luminance of the background, whereas the horizontal dashed line
represents the actual neuron’s median firing rate when presented with only the
background. B: contrast fit in the annulus-change condition. Dashed vertical
line represents background luminance; the dotted vertical line is the center
luminance. C: similar plot for the mean-luminance model in the center-change
condition. D: fit of the mean-luminance model in the annulus-change condi-
tion. Figure illustrates that, for this neuron, the contrast model fits the data
better (R2 � 93.72) than the mean-luminance model (R2 � 65.13). Icons below
illustrate the general form of the stimuli and do not correspond directly to any
of the stimulus conditions.
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mean-luminance model, the weighted center luminance is neg-
ative, whereas the weighted mean luminance is positive.

Comparison of model fits

The variance explained (R2) values for all fitted neurons are
shown in separate histograms for each model in Fig. 4. Each
panel also shows the breakdown of fits across the three clas-
sified types of neurons in Kinoshita and Komatsu (2001). The
contrast model (Fig. 4A) generated far better fits than the
mean-luminance model (Fig. 4B). The median fits over the
entire population were 73 and 87% for the mean-luminance
and contrast models, respectively. The contrast model gener-
ated the better fit in 60/67 neurons (90%), with a mean
improvement of 15.8% associated with these 60 neurons. In
64% of neurons, fits associated with the contrast model ex-
ceeded 80%, whereas the mean-luminance model performed
similarly in only 37% of neurons. Interestingly, the quality of
the fits do not appear to differ substantially with the Kinoshita–
Komatsu classification of RF type for either model. We now
turn to the question of whether the extra variance explained by
the contrast model justifies the need for two extra free param-
eters.

Comparison of model performance

We analyzed the performance of the general contrast and
mean-luminance models using Akaike’s corrected information
criterion (see METHODS), a technique that trades off fit quality
against number of parameters to give the probability of a given
model being correct. This analysis was carried out for the
entire population of 67 surface-responsive neurons. Figure 5A
shows a histogram of the proportions of neurons versus the
relative probabilities of the mean-luminance model being cor-
rect (the corresponding graph for the contrast model is simply
Fig. 5A with left–right reversal). Relative probabilities are
represented in percentages (partly to underline that our relative
probabilities should not be interpreted in the classical statistical
sense). The bins are 10% units wide. As a guide, we shall

interpret frequencies in the 90–100% bin as providing rela-
tively strong evidence in favor of the mean-luminance model,
with values in the 0–10% bin providing relatively strong
evidence in favor of the contrast model. We emphasize, how-
ever, that such percentiles do not represent arbitrary statistical
criteria for accepting or rejecting either model. The figure
clearly shows that the mean-luminance model is favored in
around 50% of neurons (34/67 neurons in the 90–100% bin, of
which 18/67 fall in a 99–100% bin), with the contrast model
performing well in only about 10% of neurons (6/67). In the
remaining cases, there is no strong evidence in favor of either
model. Similar results obtain using the BIC method (Fig. 5B).
The better performance of the mean-luminance model can be
traced to the fact that it has two fewer free parameters than the
contrast model and so is penalized less in the calculation of
relative probabilities in both the AIC and BIC analyses. For
simplicity, we restrict the remainder of our analysis to the AIC
method.

Because the validity of our performance analysis depends on
the assumption of Gaussian-distributed residuals with zero
mean, we checked that all neurons met these criteria (see
METHODS). We found that in no case did the means of the
residuals differ from zero. In six instances, the residuals asso-
ciated with the mean-luminance model were found to be
significantly non-Gaussian at � � 0.05. Only one of these
cases corresponded to a neuron deemed highly likely to be
correct (90–100% bin). Likewise, there were seven cases of
non-Gaussian residuals associated with the contrast model and
only one such instance related to a neuron deemed highly likely
to be correct (0–10% bin). Setting the statistical threshold at
� � 0.01, we found that, for both models simultaneously, only
four neurons did not fulfill the Gaussian requirement. Thus the
results of our analysis are not greatly affected by mild viola-
tions of the assumptions underlying the analysis.

Simplifying the contrast model

Because of the flexibility of AIC approach, we were able to
simplify both the contrast and mean-luminance models and to

FIG. 4. Histograms of the fits associated with the general contrast and mean-luminance models. A: contrast model generated excellent fits in most cases. B:
mean-luminance model generated poorer fits on average.
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make multiple comparisons between various models without
the constraints associated with classical statistical analyses.
(Note that classical F-test comparisons between the luminance
and contrast models are not valid, in any case, because these
models are not nested.) We implemented two simplified ver-
sions of the general contrast model (see METHODS). We then fit
these constrained models to the entire data set and calculated
the combined relative probabilities of these models being
correct relative to the mean-luminance model. We found that
the performance of the mean-luminance model far exceeded
that of the two constrained contrast models (Fig. 6). The
performance of the constrained model without half-wave rec-
tification (Fig. 6A) was roughly the same as that of the general
contrast model (Fig. 5). The performance of the other con-
strained model, in which only the inner edge contributed to the
response, was worse than that of the general contrast model for
Type 1 and Type 3 neurons (Fig. 6B). The constrained contrast

model improved slightly in performance for Type 2 neurons,
however.

Simplifying the mean-luminance model

We also implemented two simplified versions of the mean-
luminance model and compared the performance of these
models against that of the mean-luminance model. In these
simplified models, the weight associated with the mean-lumi-
nance input was set to zero. We therefore refer to these
simplified models as local-luminance models. The only differ-
ence between the two local-luminance models was the absence
of half-wave rectification of the input signal in one model. The
consequence of omitting the HWR bracket is to allow the input
to become negative. We added the relative probabilities asso-
ciated with the two local-luminance models (addition of rela-
tive probabilities is possible within the AIC framework) and

FIG. 5. Comparison of general contrast and mean-luminance models using Akaike’s information criterion (AIC) and Bayesian information criterion (BIC).
A: with the AIC method, the mean-luminance model convincingly outperforms the contrast model in nearly 50% of neurons (90–100% bin), whereas the contrast
model performs similarly in only about 10% of neurons (0–10% bin). Better performance of the mean-luminance model can be traced back to the fact that it
has 2 fewer parameters. B: BIC method produces similar results. We present the remaining results using the AIC method.

FIG. 6. Comparisons between two constrained contrast models and the mean-luminance model. A: unrectified version of contrast model performs about the
same as the general contrast model. B: mean-luminance model completely outperforms the inner-edge contrast model (note the different scale).
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compared these values against the relative probabilities (cor-
rected by a factor of two) associated with the mean-luminance
model.

We found that the local-luminance models convincingly
outperformed the mean-luminance model in around 30% of
Type 1 and Type 2 neurons (Fig. 7). These results are some-
what surprising because one may have expected that all Type
1 neurons (and no Type 2 neurons) would be better explained
by the local-luminance models. The mean-luminance model,
by comparison, performed very well in about 50% of Type 2
neurons and 20% of Type 3 neurons. We are led to conclude
that, for many neurons originally classified as Type 3 (and to a
lesser extent, those classified as Type 2), the processing of
local luminance alone provides an adequate quantitative de-
scription of neuronal response profiles. Taken together with the
poor overall performance of the contrast models, the present
analysis suggests that the majority of surface-responsive neu-
rons process local luminance (together with mean luminance in
many cases).

Are the fitted parameters functionally interpretable?

We checked whether the estimated parameter values from
our analysis of the mean-luminance model could be interpreted
physiologically. Figure 8 shows the best-fitting parameters and
associated 95% confidence intervals. Importantly, across the
entire population of neurons ( j), we found strong correlations
between the parameters (w1

j and C j) common to the mean-
luminance model and the two local-luminance models (r2 �
0.89, P � 0.0001, in all cases). Thus studying the parameter
values derived from the mean-luminance model is meaningful
for the majority of neurons. In Fig. 8, the different panels
represent w1

j , w2
j , and C j, respectively. The color of the back-

ground encodes the neuron type. We suggest that the weighting
parameters (w1

j and w2
j ) find a natural physical interpretation in

terms of excitatory and inhibitory weightings of the input
sources to neurons. The interpretation of C j, however, seems
more difficult. For example, C j could represent spontaneous
firing rates, in which case we would expect C j to be always
positive. Figure 8 indicates that this was not always the case.
Another problem with this interpretation is that many neurons
are likely to process local-luminance information, meaning that
accurate estimates of spontaneous firing rates must come from
recordings in complete darkness. The default (baseline) condi-
tions in Kinoshita and Komatsu (2001), however, generally
involved showing animals uniform gray stimuli on the exper-
imental display. Thus it may be that C j represents the combi-
nation of spontaneous firing rates and the influence of the
background luminance stimuli. Another possibility is that C j

represents a factor analogous to the relationship (Carandini et
al. 2000) between resting membrane potential (RMP) and
spiking threshold (ST). If RMP is above ST, on the one hand,
a neuron exhibits positive spontaneous firing rates. If RMP is
below ST, on the other hand, a neuron requires additional input
excitation to overcome the ST. According to this interpretation,
C j represents the value of ST relative to RMP for each neuron.

Does the luminance approach provide any new insights into
the functional properties of surface coding in visual cortex? To
answer this question, we plotted the weights w1

j and w2
j against

each other (Fig. 8D). This enabled us to examine the relative
contribution of local- and mean-luminance to the firing rate of
each neuron. We found a significant positive linear relationship
between w1

j and w2
j for bright neurons (r � 0.67, P � 0.0001),

and a nonsignificant linear relationship for dark neurons (r �
0.36, P � 0.15). The population as a whole exhibited a
V-shaped distribution, with bright neurons to the right side of
the zero value for the local-luminance weight and dark neurons
to the left. Here we focus only on bright neurons. When the
local-luminance weight is zero (w1

j � 0), surface-responsive
neurons encode the weighted mean log luminance, as in

FIG. 7. Comparison between local- and mean-
luminance models indicates that the mean-lumi-
nance model performs poorly for most Type 1
neurons. Although nearly 50% of Type 2 neurons
and 20% of Type 3 neurons are highly consistent
with the mean-luminance model, a surprisingly
large proportion of these neurons are reasonably
well described by the local-luminance models.
These quantitative results suggest that many Type
2 and 3 neurons were incorrectly classified in the
Kinoshita–Komatsu study.

2645SURFACE CODING IN VISUAL CORTEX

J Neurophysiol • VOL 95 • APRIL 2006 • www.jn.org

 on A
pril 7, 2006 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


log (Lmean
w2 ). As the value of the local-luminance weight be-

comes more positive (w1
j 3 �), we first pass through a region

of parameter space where local- and mean-luminance terms are
positive and negative, respectively, as in log (Lc

w1Lmean
w2 ). These

neurons would correspond to Type 3 neurons in the Kinoshita–
Komatsu classification scheme. As noted previously, however,
strong AIC evidence in favor of the Type 3 classification
emerged in only a few neurons. One possible functional inter-
pretation of neurons exhibiting strong evidence for positive and
negative local- and mean-luminance weights is that, in reality,
these neurons sum luminance signals over the entire visual
field, with greater weight assigned to local luminance signals.
As w1

j increases further, the mean-luminance weights first
approach zero (w2

j 3 0), corresponding to the local-luminance
coding regime, as in log (Lc

w1), before taking on positive values
(w2

j 3 �), thereby encoding weighted local luminance relative
to weighted mean luminance, as in log (Lc

w1/Lmean
w2 ). The latter

neurons may partially discount illumination through ratio pro-
cessing (Type 2 neurons), although the efficiency of the dis-
counting will depend on the precise values of w1

j and w2
j :

discounting is 100% efficient when w1
j � w2

j 
 0. To summa-
rize, our analysis suggests that most neurons encode either
local or mean luminance and, in some instances, local lumi-
nance relative mean luminance. These functional types would
therefore appear to provide useful information about comple-
mentary aspects of the stimulus.

D I S C U S S I O N

In this study, we have developed models to examine whether
the known properties of surface-responsive V1 neurons (Ki-
noshita and Komatsu 2001) could be better explained by
assuming processing of luminance or contrast signals. Our
results indicate that, even though the full contrast model
provides the better fits, the mean-luminance model performs

better in the majority of neurons. The full contrast model
clearly performs better in only a small minority of neurons.
Simplification of the mean-luminance model, but not the full
contrast model, leads to improvements in performance in a
sizable proportion of neurons. Not all neurons are well fit by
any of the tested models, however, and in some instances the
data do not strongly support one or another model. To the
extent that we acknowledge that all models are necessarily
wrong—that is, they all fall short of describing reality—we
view our methods and results as a useful guide for interpreting
experimental data on surface-responsive neurons (Hung et al.
2001, 2002; Peng and Van Essen 2005; Roe et al. 2005).
Because our results depend on a statistical technique that
appears to be relatively unfamiliar in visual neuroscience, we
first briefly discuss the approach.

Akaike’s information criterion and model selection

Determining how well a model describes reality—or select-
ing between competing models of reality—is a fundamental
problem in science. The approach used herein—Akaike’s in-
formation criterion, or AIC—is based on considerations from
information theory (Burnham and Anderson 2002). Briefly,
AIC measures the amount of information lost when a model is
used to approximate reality. Of a candidate set of models, the
model that minimizes the loss of information is deemed most
likely to be correct. The loss of information is quantified in the
trade-off between goodness of fit and number of free parame-
ters (see METHODS). Importantly, AIC is not derived under the
assumption that the true model is included in the candidate set
of models.

The AIC approach is becoming increasingly popular in the
biological sciences, largely because of its simplicity and flex-
ibility (Elder and Sachs 2004; Posada and Buckley 2004).
Multimodel analyses of the type performed herein, for exam-

A B

C D

FIG. 8. All fitted parameters for the mean-luminance
model for each neuron. Weights associated with the local-
luminance signal (A) and the mean-luminance signal (B).
C: additive constants. Shaded red, green, and blue regions
correspond to Types 1, 2, and 3 neurons, respectively.
Lighter shading represents Bright neurons, whereas the
darker regions indicate Dark neurons. Weighting param-
eters are readily interpretable in terms of excitatory and
inhibitory inputs to neurons, whereas the additive constant
is more difficult to interpret. D: scatterplot relating local-
and mean-luminance weights. Different functional classes
are interpreted in terms of different combinations of local-
and mean-luminance weights. See text for further
discussion.
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ple, are not possible with conventional statistical approaches,
such as the F-ratio test (Burnham and Anderson 2002). The
present application represents one of the first uses of AIC in the
context of modeling neurophysiological data (Averbeck and
Lee 2003; Schall et al. 2004). Averbeck and Lee (2003), for
example, used a simpler version of the AIC approach (one not
corrected for sample size) in their study of neural coding in the
supplementary motor area of the rhesus monkey.

A reappraisal of surface coding in V1

Kinoshita and Komatsu (2001) classified surface-responsive
neurons according to the slopes of their response functions in
center- and annulus-change conditions. We adopted a comple-
mentary approach in our analysis, asking whether neurons’
responses were better explained by luminance or contrast
information, regardless of the respective slopes of the response
functions. Our analysis indicates that neurons classified as
different based on analysis of response slopes may, in fact,
share hidden similarities. Neurons for which we found strong
evidence of contrast processing, for example, were of both the
Type 2 and Type 3 varieties. Conversely, we found that only
30% of neurons classified by Kinoshita and Komatsu (2001) as
Type 1 were better explained by our local-luminance models,
relative to the mean-luminance model (although no Type 1
neurons were better explained by the mean-luminance model
than the local-luminance models). We conclude that, to draw
meaningful functional conclusions concerning the information
processed by surface-responsive neurons in the Kinoshita–
Komatsu experiments, one needs to take into account more
than the slopes of the response functions.

Distinguishing between contrast and luminance responses

Roe et al. (2005) examined surface-responsive neurons us-
ing stimuli well suited to delineating between contrast and
luminance responses (see also Hung et al. 2001). Their stimuli
consisted of a bipartite field in which left and right halves
modulated in counterphase over time, keeping mean luminance
constant. Either the left or right half of the stimulus was placed
over the mapped local RF of a neuron. In one condition, the
luminance values of the entire left and right hemifields mod-
ulated in time (real luminance change). In a second condition,
the authors used Cornsweet stimuli to modulate only lumi-
nance values near the border—a stimulus that elicits illusory
brightness filling-in in humans—while keeping local lumi-
nance within the RF, and also mean scene luminance, constant.

The findings of Roe et al. (2005) are in agreement with our
conclusion that the vast majority of surface-responsive neurons
process luminance information (note that the stimuli of Roe et
al. cannot be used to distinguish local- and mean-luminance
models because mean luminance was always constant). These
authors found that around 50% of sampled V1 and V2 neurons
were significantly modulated by local-luminance changes (i.e.,
surface responsive). In comparison, no surface-responsive V1
neurons, and only around 10% of surface-responsive V2 neu-
rons, were significantly modulated by the Cornsweet stimulus.
Optical imaging revealed significant activation in V2 thin
stripes for both real and illusory brightness changes, although
no significant signal was obtained in V1 for either stimulus
type. Roe et al. concluded that the computations underlying
surface brightness are likely to occur in V2 but not in V1.

The results of Roe et al. (2005) support the generality of our
conclusion that luminance processing predominates over con-
trast integration in V1 neurons. This point is of particular
importance because the stimuli used by Roe et al. differed in
key ways from those of Kinoshita and Komatsu (2001). The
luminance stimuli of Roe et al. varied sinusoidally in time,
and the authors’ analyses were based on the spike rates
derived over the entire presentation period. In contrast, the
stimuli of Kinoshita and Komatsu remained static over the
entire presentation period, and our analyses were based only
on the latter part of the response. It remains to be seen
whether application of our analysis to V2 neurons would
support contrast integration.

Tuning for luminance stimuli

Peng and Van Essen (2005) reported that around 10–30% of
surface-responsive neurons in macaque V1 and V2 are tuned
for luminance stimuli in a manner analogous to the way
edge-responsive neurons are tuned to spatial frequency. In the
context of the experiments of Kinoshita and Komatsu (2001),
luminance tuning corresponds to peak firing rates at luminance
values away from the maximum or minimum values used in the
experiments. Although we did not test any models that incor-
porate luminance tuning, we observed informally that instances
where both models fit the data poorly were largely a result of
nonmonotonic relationships between firing rate and center (or
annulus) luminance, as would be expected with luminance
tuning. The methods developed herein could be naturally
extended to quantitatively assess evidence for various forms of
luminance tuning in future modeling studies.

Roles of contrast and luminance

This paper began with an overview of the two main stimulus
cues in achromatic surface perception: contrast and luminance.
We had expected to find strong evidence in favor of contrast
integration in many cortical neurons because this notion is at
the core of many models of surface perception (Land and
McCann 1971). Psychophysical evidence points to a critical
role for contrast in determining surface brightness (Davey et al.
1998; Hong and Shevell 2004a,b; Paradiso and Nakayama
1991; Rossi and Paradiso 1996; Rudd and Arrington 2001;
Rudd and Zemach 2004; Shapiro et al. 2004). Yet, as indicated
in our introductory remarks, contrast processing does not
obviate the need for luminance processing. Indeed, theoretical
studies support roles for both local luminance (Gilchrist 1999;
Pessoa et al. 1995) and mean luminance (Land and McCann
1971; Robilotto and Zaidi 2004) in determining aspects of
brightness and lightness perception. More generally, if no
luminance information were to reach visual cortex, animals
would be unable to estimate overall light level (Barlow and
Verrillo 1976; Masin 2003). Previous reports of cortical neu-
rons that respond to Ganzfield luminance stimuli (Kayama et
al. 1979; Maguire and Baizer 1982) are also consistent with the
notion that both luminance and contrast play important roles in
determining surface brightness. The precise nature of the
putative contribution of surface-responsive neurons to bright-
ness perception, however, remains unclear, particularly in light
of the availability of alternative approaches to brightness that
do not involve assumptions of spatial isomorphism (Blakeslee
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and McCourt 1999; Friedman et al. 2003; Zhou et al. 2000).
Consistent with the present analysis, and with approaches
eschewing spatial isomorphism, a recent fMRI study (Cornel-
issen et al. 2006) has shown that temporal changes in local
luminance, but not brightness changes induced through tem-
poral modulation of a surround field, are correlated with
retinotopic activity in early human visual cortex.

Limitations and additional considerations

Our analysis is based on responses obtained (for most
neurons) in the 520- to 1,020-ms epoch after stimulus onset.
How then might we reconcile the temporal discrepancy be-
tween the latency of neural responses and psychophysical data
indicating that human brightness percepts emerge after about
120 ms (Davey et al. 1998; Paradiso and Nakayama 1991;
Rossi and Paradiso 1996) or even earlier (McCourt and Foxe
2004)? One answer is that the temporal discrepancy is not as
great as it first appears. It is clear, for example, from Figs. 3
and 8 of Kinoshita and Komatsu (2001), that responses char-
acteristic of surface coding, such as polarity selectivity and the
modulatory effects of annuli, actually emerged at around 120–
220 ms in most neurons. Thus our analysis of the 520- to
1,020-ms epoch may actually generalize to earlier epochs that
appear more consistent with classical psychophysical estimates
of the time course of brightness perception (Davey et al. 1998;
Paradiso and Nakayama 1991; Rossi and Paradiso 1996). A
second answer is that recent psychophysical evidence indicates
that temporal aspects of brightness perception may consist of
separate contrast and luminance components with different
time courses. Shapiro et al. (2004), for example, provide
evidence to indicate that luminance signals primarily determine
brightness at temporal frequencies around 1 Hz, whereas con-
trast signals primarily determine brightness at higher temporal
frequencies. The relatively sluggish luminance-based re-
sponses studied here would therefore appear to fit well with the
slow luminance component of brightness perception. One po-
tential explanation for the sluggish nature of these responses is
that local-luminance signals must be extracted through cortical
computations (Neumann 1996) from the combined luminance/
contrast signals encoded by LGN input neurons (e.g., Barlow
and Levick 1969; Mante et al. 2005; Rossi and Paradiso 1999).
As indicated previously, luminance signals may also contribute
to the anchoring of lightness percepts (Gilchrist et al. 1999).
Because the temporal properties of lightness anchoring are not
known, it remains possible that the time course of luminance
responses in visual cortex may be consistent with anchoring.
None of these speculations, however, sheds light on the manner
in which luminance and contrast signals might combine to
determine brightness and lightness within a framework that
does not depend on spatial isomorphism.

Another potential limitation of the present study concerns
the use of multiunit recordings in our analysis. Of the record-
ings in the Kinoshita and Komatsu (2001) study, 30/76 (40%)
were obtained under conditions where it was not possible to
isolate single neurons. This may have led to an averaging-out
of the response properties of the contributing neurons, leading
to uncertainties concerning the classification of recordings into
functional types. Recordings classified as Type 1, for instance,
may actually have arisen through averaging of individual Type
2 and Type 3 neuronal responses. This is because pooling

spikes from Type 2 and Type 3 neurons, which respond with
opposite sign to changes in annulus luminance, would tend to
flatten out the response function in the annulus-change condi-
tion, thereby making multiunit recording traces appear more
like Type 1 “neurons.” The use of multiunit recordings in our
study probably does not affect our main conclusion that the
mean-luminance model outperforms the contrast model be-
cause identical results were obtained for all functional classes.
It is nonetheless possible that the comparison between local-
and mean-luminance models may have been partially distorted
by the use of multiunit traces. Table 2 of Kinoshita and
Komatsu (2001), however, shows that only 12 of 30 multiunit
recordings were classified as Type 1, implying that multiunit
recordings largely agree with traces obtained from single
neurons.

We conclude that no single model of surface coding captures
the heterogeneous nature of cortical surface computations. Our
theoretical approach, in which log luminance ratio processing
is combined with half-wave rectification, provides a simple and
novel mathematical framework for examining specific variants
of surface-coding models. The challenge for future research
will be to further refine our understanding of the myriad
cortical mechanisms underlying surface coding to link them to
brightness and lightness perception.
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